Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Experiential learning in biomedical engineering curricula is a critical component to developing graduates who are equipped to contribute to technical design tasks in their careers. This paper presents the development and implementation of an undergraduate and graduate-level soft material robotics design course focused on applications in medical device design. The elective course, offered in a bioengineering department, includes modules on technical topics and hands-on projects relevant to readings, all situated within a human-centered design course. After learning and using first principles governing soft robot design and exploring literature in soft robotics, students propose a new advance in the field in a hands-on design and prototype project. The course described here aims to create a structure to engage students in fabrication and the design approaches taken by practitioners in a specific field, applied here in soft robotics, but applicable to other areas of biomedical engineering. This teaching tips article details the pedagogical tools used to facilitate design and collaboration within the course. Additionally, we aim to highlight ways in which the course creates (1) opportunities to engage undergraduates in design in preparation for capstone courses, (2) outward facing opportunities to connect with practitioners in the field, and (3) the ability to adapt this hands-on experience within a typical lecture structure as well as a hybrid online and in-person offering, thus expanding its utility in bioengineering departments. We reflect on course elements that can inform future design-based course offerings in soft robotics and other design-based multidisciplinary fields in bioengineering.more » « less
-
Soft material robots are uniquely suited to address engineering challenges in extreme environments in new ways that traditional rigid robot embodiments cannot. Soft robot material flexibility, resistance to brittle fracture, low thermal conductivity, biostability, and self-healing capabilities present new solutions advantageous to specific environmental conditions. In this review, we examine the requirements for building and operating soft robots in various extreme environments, including within the human body, underwater, outer space, search and rescue sites, and confined spaces. We analyze the implementations of soft robotic devices, including actuators and sensors, which meet these requirements. Besides the structure of these devices, we explore ways to expand the use of soft robots in extreme environments with design optimization, control systems, and their future applications in educational and commercial products. We further discuss the current limitations of soft robots recognizing challenges to compliance, strength, and control. With this in mind, we present arguments for the future of robotics in which hybrid (rigid and soft) structures meet complex environmental needs.more » « lessFree, publicly-accessible full text available February 20, 2026
-
Ask your students what they think of when they hear the word robotics. Most students likely imagine a large, clunky machine used in a manufacturing plant or construction site. Other students may mention modern humanoid robots that appear in popular culture like C3PO from the Star Wars franchise. No matter the response, there is a good chance that nearly all students will mention a robot made of hard materials like metal. This article describes the introduction of a new field, soft robotics, into high school classrooms to broaden students’ perceptions of how robots can be used and who works on robotics. Soft robots are made from compliant materials, such as rubber or textiles, and have a wide variety of applications in the medical field, space exploration, and food distribution. This field provides an excellent opportunity to expand students’ view of robotics while learning how to think and design like an engineer.more » « less
An official website of the United States government

Full Text Available