skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nodal topological superconductivity in nodal-line semimetals
Award ID(s):
2045781
PAR ID:
10519461
Author(s) / Creator(s):
;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review B
Volume:
108
Issue:
22
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let G be a random d-regular graph on n vertices. We prove that for every constant a>0, with high probability every eigenvector of the adjacency matrix of G with eigenvalue sufficiently small has Omega(n/polylog(n)) nodal domains. 
    more » « less
  2. We propose a novel collocated projection method for solving the incompressible Navier-Stokes equations with arbitrary boundaries. Our approach employs non-graded octree grids, where all variables are stored at the nodes. To discretize the viscosity and projection steps, we utilize supra-convergent finite difference approximations with sharp boundary treatments. We demonstrate the stability of our projection on uniform grids, identify a sufficient stability condition on adaptive grids, and validate these findings numerically. We further demonstrate the accuracy and capabilities of our solver with several canonical two- and three-dimensional simulations of incompressible fluid flows. Overall, our method is second-order accurate, allows for dynamic grid adaptivity with arbitrary geometries, and reduces the overhead in code development through data collocation. 
    more » « less