skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Suzuki–Miyaura Cross-Coupling of Amides by N–C Cleavage Mediated by Air-Stable, Well-Defined [Pd(NHC)(sulfide)Cl2] Catalysts: Reaction Development, Scope, and Mechanism
Award ID(s):
1650766
PAR ID:
10519498
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
The Journal of Organic Chemistry
Volume:
88
Issue:
15
ISSN:
0022-3263
Page Range / eLocation ID:
10858 to 10868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, β-Ga 2 O 3 fin field-effect transistors (FinFETs) with metalorganic chemical vapor deposition grown epitaxial Si-doped channel layer on (010) semi-insulating β-Ga 2 O 3 substrates are demonstrated. β-Ga 2 O 3 fin channels with smooth sidewalls are produced by the plasma-free metal-assisted chemical etching (MacEtch) method. A specific on-resistance (R on,sp ) of 6.5 mΩ·cm 2 and a 370 V breakdown voltage are achieved. In addition, these MacEtch-formed FinFETs demonstrate DC transfer characteristics with near zero (9.7 mV) hysteresis. The effect of channel orientation on threshold voltage, subthreshold swing, hysteresis, and breakdown voltages is also characterized. The FinFET with channel perpendicular to the [102] direction is found to exhibit the lowest subthreshold swing and hysteresis. 
    more » « less
  2. α-Ga2O3has the corundum structure analogous to that of α-Al2O3. The bandgap energy of α-Ga2O3is 5.3 eV and is greater than that of β-Ga2O3, making the α-phase attractive for devices that benefit from its wider bandgap. The O–H and O–D centers produced by the implantation of H+and D+into α-Ga2O3have been studied by infrared spectroscopy and complementary theory. An O–H line at 3269 cm−1is assigned to H complexed with a Ga vacancy (VGa), similar to the case of H trapped by an Al vacancy (VAl) in α-Al2O3. The isolated VGaand VAldefects in α-Ga2O3and α-Al2O3are found by theory to have a “shifted” vacancy-interstitial-vacancy equilibrium configuration, similar to VGain β-Ga2O3, which also has shifted structures. However, the addition of H causes the complex with H trapped at an unshifted vacancy to have the lowest energy in both α-Ga2O3and α-Al2O3
    more » « less
  3. Abstract Orthorhombic molybdenum trioxide (α‐MoO3) is a highly anisotropic hyperbolic material in nature. Within its wide Reststrahlen bands, α‐MoO3has hyperboloidal dispersion that supports bulk propagation of high‐k phonon polariton modes. These modes can serve as energy transport channels to greatly enhance radiative heat transfer inside the material. In this work, large radiative transfer enabled by phonon polaritons in α‐MoO3is demonstrated. The study first determines the temperature‐dependent permittivity of α‐MoO3from polarized Fourier‐Transform Infrared (FTIR) spectroscopy measurements and then uses a many‐body radiative heat transfer model to predict the equivalent radiative thermal conductivity of hyperbolic phonon polariton. Contribution of radiative transfer to the total thermal transport is experimentally determined from the Time‐Domain Thermoreflectance (TDTR) measurements in a temperature range from −100 to 300 °C. It is found that radiative transfer can account for ≈60% of the total thermal transport at a temperature of 300 °C. That is, conductive thermal transport is enhanced by >100% by radiative transfer, or radiation inside α‐MoO3is greater than that of conduction. These additional energy pathways will have important implications in thermal management in new materials and devices. 
    more » « less
  4. null (Ed.)