Subduction related to the ancient supercontinent cycle is poorly constrained by mantle samples. Sublithospheric diamond crystallization records the release of melts from subducting oceanic lithosphere at 300–700 km depths1,2and is especially suited to tracking the timing and effects of deep mantle processes on supercontinents. Here we show that four isotope systems (Rb–Sr, Sm–Nd, U–Pb and Re–Os) applied to Fe-sulfide and CaSiO3inclusions within 13 sublithospheric diamonds from Juína (Brazil) and Kankan (Guinea) give broadly overlapping crystallization ages from around 450 to 650 million years ago. The intracratonic location of the diamond deposits on Gondwana and the ages, initial isotopic ratios, and trace element content of the inclusions indicate formation from a peri-Gondwanan subduction system. Preservation of these Neoproterozoic–Palaeozoic sublithospheric diamonds beneath Gondwana until its Cretaceous breakup, coupled with majorite geobarometry3,4, suggests that they accreted to and were retained in the lithospheric keel for more than 300 Myr during supercontinent migration. We propose that this process of lithosphere growth—with diamonds attached to the supercontinent keel by the diapiric uprise of depleted buoyant material and pieces of slab crust—could have enhanced supercontinent stability.
This content will become publicly available on July 1, 2025
- Award ID(s):
- 2025779
- NSF-PAR ID:
- 10519564
- Publisher / Repository:
- Journal of International Kimberlite Conference Abstracts (JIKCA)
- Date Published:
- ISBN:
- 978-1-55195-516-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The nature and cause of deep earthquakes remain enduring unknowns in the field of seismology. We present new models of thermal structures of subducted slabs traced to mantle transition zone depths that permit a detailed comparison between slab pressure/temperature (
P/T ) paths and hydrated/carbonated mineral phase relations. We find a remarkable correlation between slabs capable of transporting water to transition zone depths in dense hydrous magnesium silicates with slabs that produce seismicity below ∼300‐km depth, primarily between 500 and 700 km. This depth range also coincides with theP/T conditions at which oceanic crustal lithologies in cold slabs are predicted to intersect the carbonate‐bearing basalt solidus to produce carbonatitic melts. Both forms of fluid evolution are well represented by sublithospheric diamonds whose inclusions record the existence of melts, fluids, or supercritical liquids derived from hydrated or carbonate‐bearing slabs at depths (∼300–700 km) generally coincident with deep‐focus earthquakes. We propose that the hydrous and carbonated fluids released from subducted slabs at these depths lead to fluid‐triggered seismicity, fluid migration, diamond precipitation, and inclusion crystallization. Deep focus earthquake hypocenters could track the general region of deep fluid release, migration, and diamond formation in the mantle. The thermal modeling of slabs in the mantle and the correlation between sublithospheric diamonds, deep focus earthquakes, and slabs at depth demonstrate a deep subduction pathway to the mantle transition zone for carbon and volatiles that bypasses shallower decarbonation and dehydration processes. -
Abstract Superdeep diamonds contain unique information from the sublithospheric regions of Earth's interior. Recent studies suggest that reaction between subducted carbonate and iron metal in the mantle plays an important role in the production of superdeep diamonds. It is unknown if this reaction is kinetically feasible in cold slabs subducted into the deep mantle. Here we present experimental data on real‐time tracking of the magnesite‐iron reaction at high pressures and high temperatures to demonstrate the production of diamond at the surface conditions of cold slabs in the transition zone and lower mantle. Our data reveal that the diamond production rate has a positive temperature dependence and a negative pressure dependence, and along a slab geotherm it decreases by a factor of three at pressures from 14.4 to 18.4 GPa. This rate reduction provides an explanation for the rarity of superdeep diamonds from the interior of the mantle transition zone.
-
With the past decades of diamond inclusion research, it is now well established that the mantle-derived diamonds are originated either from the lithospheric mantle or sublithospheric mantle. The lithospheric diamonds can be further divided into mainly the peridotitic and eclogitic suites, which can be distinguished based on their inclusion chemistry, carbon, and nitrogen isotopic compositions (1, 2). The parental lithology of sublithospheric diamonds is less well established, partly due to their much lower occurrence relative to the lithospheric diamonds. But there has been growing isotopic evidence for the involvement of subducted materials in the source region of sublithospheric diamonds, such as carbon, boron, oxygen, and iron (3–6). Precipitation of diamonds in the Earth’s mantle has been thought to require the presence of a fluid phase. Being C-O-H, saline, carbonatitic, silicic, or metallic in composition, these fluids were released upon dehydration or partial melting of the parental lithology and migrate through the mantle until they reach diamond saturation point due to either the change in pressure-temperature, or redox conditions. Understanding the parental lithology and fluid composition of different diamonds has primarily relied on their carbon and nitrogen isotope compositions and major/trace element compositions of mineral/fluid inclusions. These tools have been shown to be powerful in many cases but each could have their own disadvantages. Nitrogen isotopes, for example, are less applicable to sublithospheric diamonds due to their low N concentration. Trace element compositions, on the other hand, can be easily manipulated by small mass fractions of low degree-melt that are enriched in incompatible elements. Understanding the diamond-forming fluids and their parental lithology require new tools that can provide a different perspective than the ones discussed above. In this presentation, we show recent developments in adapting Fe, Mg, and K isotope systems to diamond inclusion studies for a better understanding of their formation. These so-called “non-traditional” stable isotope systems were typically developed for large rocks that are not limited by sample amount. In order to adapt them to mineral inclusions tens to hundreds of micrometers in size, we’ve developed dedicated procedures to: 1) clean the diamond surface to remove contamination before extracting individual inclusions; 2) scale down the columns used for chemical purification to minimize blanks; and 3) improving sensitivity on the mass spectrometer to analyze small samples. With a Nu Plasma II at the Carnegie Institution for Science, we have shown to be able to analyze inclusion samples containing as little as 200 ng of Fe (6). With an upgraded Nu Plasma Sapphire at UCLA that is equipped with a collision cell, we are now able to analyze samples with >25 ng Fe. The same strategy has now been expanded to Mg and K isotope systems, for which a low sample limit of 25 ng and 300 ng has been achieved. With examples of Fe and Mg isotopic compositions of ferropericlase in sublithospheric diamond and K isotopic composition of fluid inclusions in fibrous diamonds, we show how isotopic compositions of major elements of mineral/fluid inclusions in diamond bring us new perspectives on their origin. Our tests show promising results to extend existing Mg and Fe protocols to silicate minerals and potentially applying similar strategies to silicon, calcium, and barium isotopes in the future.more » « less
-
Abstract Metamorphic devolatilization of subducted slabs generates aqueous fluids that ascend into the mantle wedge, driving the partial melting that produces arc magmas. These magmas have oxygen fugacities some 10–1,000 times higher than magmas generated at mid-ocean ridges. Whether this oxidized magmatic character is imparted by slab fluids or is acquired during ascent and interaction with the surrounding mantle or crust is debated. Here we study the petrology of metasedimentary rocks from two Tertiary Aegean subduction complexes in combination with reactive transport modelling to investigate the oxidative potential of the sedimentary rocks that cover slabs. We find that the metasedimentary rocks preserve evidence for fluid-mediated redox reactions and could be highly oxidized. Furthermore, the modelling demonstrates that layers of these oxidized rocks less than about 200 m thick have the capacity to oxidize the ascending slab dehydration flux via redox reactions that remove H2, CH4and/or H2S from the fluids. These fluids can then oxidize the overlying mantle wedge at rates comparable to arc magma generation rates, primarily via reactions involving sulfur species. Oxidized metasedimentary rocks need not generate large amounts of fluid themselves but could instead oxidize slab dehydration fluids ascending through them. Proposed Phanerozoic increases in arc magma oxygen fugacity may reflect the recycling of oxidative weathering products following Neoproterozoic–Palaeozoic marine and atmospheric oxygenation.