skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Morse index theorem for mechanical systems with reflections
Abstract We prove a Morse index theorem for action functionals on paths that are allowed to reflect at a hypersurface (either in the interior or at the boundary of a manifold). Both fixed and periodic boundary conditions are treated.  more » « less
Award ID(s):
2054424
PAR ID:
10519609
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOPScience
Date Published:
Journal Name:
Nonlinearity
Volume:
37
Issue:
8
ISSN:
0951-7715
Page Range / eLocation ID:
085006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let the viscosity for the 2D steady Navier‐Stokes equations in the region and with no slip boundary conditions at . For , we justify the validity of the steady Prandtl layer expansion for scaled Prandtl layers, including the celebrated Blasius boundary layer. Our uniform estimates in ε are achieved through a fixed‐point scheme:for solving the Navier‐Stokes equations, where are the tangential and normal velocities at , DNS stands for of the vorticity equation for the normal velocityv, and the compatibility ODE for at . 
    more » « less
  2. Abstract Upwelling along the western boundary of the major ocean basin subtropical gyres has been diagnosed in a wide range of ocean models and state estimates. This vertical transport isO(5 × 106) m3s−1, which is on the same order of magnitude as the downward Ekman pumping across the subtropical gyres and zonally integrated meridional overturning circulation. Two approaches are used here to understand the reason for this upwelling and how it depends on oceanic parameters. First, a kinematic model that imposes a density gradient along the western boundary demonstrates that there must be upwelling with a maximum vertical transport at middepths in order to maintain geostrophic balance in the western boundary current. The second approach considers the vorticity budget near the western boundary in an idealized primitive equation model of the wind- and buoyancy-forced subtropical and subpolar gyres. It is shown that a pressure gradient along the western boundary results in bottom pressure torque that injects vorticity into the fluid. This is balanced on the boundary by lateral viscous fluxes that redistribute this vorticity across the boundary current. The viscous fluxes in the interior are balanced primarily by the vertical stretching of planetary vorticity, giving rise to upwelling within the boundary current. This process is found to be nearly adiabatic. Nonlinear terms and advection of planetary vorticity are also important locally but are not the ultimate drivers of the upwelling. Additional numerical model calculations demonstrate that the upwelling is a nonlocal consequence of buoyancy loss at high latitudes and thus represents an integral component of the meridional overturning circulation in depth space but not in density space. Significance StatementThe purpose of this study is to better understand what is forcing water to upwell along the western boundary at midlatitudes of the major ocean basins. This is a potentially important process since upwelling can bring heat and nutrients closer to the surface, where they can be exchanged with the atmosphere. Also, since ocean currents vary with depth, pathways followed in the upper ocean are different from those found for the deeper ocean, so the amount and location of upwelling influence where these waters go. Idealized numerical models and theory are used to demonstrate that the upwelling is ultimately driven by density changes along the western boundary of the basin that result from heat loss at high latitudes. 
    more » « less
  3. Abstract We develop a linearized boundary control method for the inverse boundary value problem of determining a density in the acoustic wave equation. The objective is to reconstruct an unknown perturbation in a known background density from the linearized Neumann-to-Dirichlet map. A key ingredient in the derivation is a linearized Blagoves̆c̆enskiĭ’s identity with a free parameter. When the linearization is at a constant background density, we derive two reconstructive algorithms with stability estimates based on the boundary control method. When the linearization is at a non-constant background density, we establish an increasing stability estimate for the recovery of the density perturbation. The proposed reconstruction algorithms are implemented and validated with several numerical experiments to demonstrate the feasibility. 
    more » « less
  4. Abstract At marine‐terminating glaciers, both buoyant plumes and local currents energize turbulent exchanges that control ice melt. Because of challenges in making centimeter‐scale measurements at glaciers, these dynamics at near‐vertical ice‐ocean boundaries are poorly constrained. Here we present the first observations from instruments robotically bolted to an underwater ice face, and use these to elucidate the interplay between buoyancy and externally forced currents in meltwater plumes. Our observations captured two limiting cases of the flow. When external currents are weak, meltwater buoyancy energizes the turbulence and dominates the near‐boundary stress. When external currents strengthen, the plume diffuses far from the boundary and the associated turbulence decreases. As a result, even relatively weak buoyant melt plumes are as effective as moderate shear flows in delivering heat to the ice. These are the firstin‐situobservations to demonstrate how buoyant melt plumes energize near‐boundary turbulence, and why their dynamics are critical in predicting ice melt. 
    more » « less
  5. Abstract Numerous geochemical anomalies exist at the K-Pg boundary that indicate the addition of extraterrestrial materials; however, none fingerprint volatilization, a key process that occurs during large bolide impacts. Stable Zn isotopes are an exceptional indicator of volatility-related processes, where partial vaporization of Zn leaves the residuum enriched in its heavy isotopes. Here, we present Zn isotope data for sedimentary rock layers of the K-Pg boundary, which display heavier Zn isotope compositions and lower Zn concentrations relative to surrounding sedimentary rocks, the carbonate platform at the impact site, and most carbonaceous chondrites. Neither volcanic events nor secondary alteration during weathering and diagenesis can explain the Zn concentration and isotope signatures present. The systematically higher Zn isotope values within the boundary layer sediments provide an isotopic fingerprint of partially evaporated material within the K-Pg boundary layer, thus earmarking Zn volatilization during impact and subsequent ejecta transport associated with an impact at the K-Pg. 
    more » « less