skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validity of steady Prandtl layer expansions
Abstract Let the viscosity for the 2D steady Navier‐Stokes equations in the region and with no slip boundary conditions at . For , we justify the validity of the steady Prandtl layer expansion for scaled Prandtl layers, including the celebrated Blasius boundary layer. Our uniform estimates in ε are achieved through a fixed‐point scheme:for solving the Navier‐Stokes equations, where are the tangential and normal velocities at , DNS stands for of the vorticity equation for the normal velocityv, and the compatibility ODE for at .  more » « less
Award ID(s):
2106650
PAR ID:
10568672
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
Volume:
76
Issue:
11
ISSN:
0010-3640
Page Range / eLocation ID:
3150 to 3232
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A transient stability flow analysis is performed using the unsteady laminar boundary layer equations. The flow dynamics are studied via the Navier–Stokes equations. In the case of external spatially developing flow, the differential equations are reduced via Prandtl or boundary-layer assumptions, consisting of continuity and momentum conservation equations. Prescription of streamwise pressure gradients (decelerating and accelerating flows) is carried out by an impulsively started Falkner–Skan (FS) or wedge-flow similarity flow solution in the case of flat plate or a Blasius solution for particular zero-pressure gradient case. The obtained mean streamwise velocity and its derivatives from FS flows are then inserted into the well-known Orr–Sommerfeld equation of small disturbances at different dimensionless times (τ). Finally, the corresponding eigenvalues are dynamically computed for temporal stability analysis. A finite difference algorithm is effectively applied to solve the Orr–Sommerfeld equations. It is observed that flow acceleration or favorable pressure gradients (FPGs) lead to a significantly shorter transient period before reaching steady-state conditions, as the developed shear layer is notably thinner compared to cases with adverse pressure gradients (APGs). During the transient phase (i.e., for τ<1), the majority of the flow modifications are confined to the innermost 20–25% of the boundary layer, in proximity to the wall. In the context of temporal flow stability, the magnitude of the pressure gradient is pivotal in determining the streamwise extent of the Tollmien–Schlichting (TS) waves. In highly accelerated laminar flows, these waves experience considerable elongation. Conversely, under the influence of a strong adverse pressure gradient, the characteristic streamwise length of the smallest unstable wavelength, which is necessary for destabilization via TS waves, is significantly reduced. Furthermore, flows subjected to acceleration (β > 0) exhibit a higher propensity to transition towards a more stable state during the initial transient phase. For instance, the time response required to reach the steady-state critical Reynolds number was approximately 1τ for β = 0.18 (FPG) and τ = 6.8 for β = −0.18 (APG). 
    more » « less
  2. We prove the inviscid limit for the incompressible Navier-Stokes equations for data that are analytic only near the boundary in a general two-dimensional bounded domain. Our proof is direct, using the vorticity formulation with a nonlocal boundary condition, the explicit semigroup of the linear Stokes problem near the flatten boundary, and the standard wellposedness theory of Navier-Stokes equations in Sobolev spaces away from the boundary. 
    more » « less
  3. This paper focuses on the laminar boundary layer startup process (momentum and thermal) in incompressible flows. The unsteady boundary layer equations can be solved via similarity analysis by normalizing the stream-wise (x), wall-normal (y) and time (t) coordinates by a variable η and τ, respectively. The resulting ODEs are solved by a finite difference explicit algorithm. This can be done for two cases: flat plate flow where the change in pressure are zero (Blasius solution) and wedge or Falkner-Skan flow where the changes in pressure can be favorable (FPG) or adverse (APG). In addition, transient passive scalar transport is examined by setting several Prandtl numbers in the governing equation at two different wall thermal conditions: isothermal and isoflux. Numerical solutions for the transient evolution of the momentum and thermal boundary layer profiles are compared with analytical approximations for both small times (unsteady flow) and large (steady-state flow) times. 
    more » « less
  4. Abstract We investigate the temporal accuracy of two generalized‐ schemes for the incompressible Navier‐Stokes equations. In a widely‐adopted approach, the pressure is collocated at the time steptn + 1while the remainder of the Navier‐Stokes equations is discretized following the generalized‐ scheme. That scheme has been claimed to besecond‐order accurate in time. We developed a suite of numerical code using inf‐sup stable higher‐order non‐uniform rational B‐spline (NURBS) elements for spatial discretization. In doing so, we are able to achieve high spatial accuracy and to investigate asymptotic temporal convergence behavior. Numerical evidence suggests that onlyfirst‐order accuracyis achieved, at least for the pressure, in this aforesaid temporal discretization approach. On the other hand, evaluating the pressure at the intermediate time step recovers second‐order accuracy, and the numerical implementation is simplified. We recommend this second approach as the generalized‐ scheme of choice when integrating the incompressible Navier‐Stokes equations. 
    more » « less
  5. Abstract In this paper we study a finite‐depth layer of viscous incompressible fluid in dimension , modeled by the Navier‐Stokes equations. The fluid is assumed to be bounded below by a flat rigid surface and above by a free, moving interface. A uniform gravitational field acts perpendicularly to the flat surface, and we consider the cases with and without surface tension acting on the free interface. In addition to these gravity‐capillary effects, we allow for a second force field in the bulk and an external stress tensor on the free interface, both of which are posited to be in traveling wave form, i.e., time‐independent when viewed in a coordinate system moving at a constant velocity parallel to the rigid lower boundary. We prove that, with surface tension in dimension and without surface tension in dimension , for every nontrivial traveling velocity there exists a nonempty open set of force and stress data that give rise to traveling wave solutions. While the existence of inviscid traveling waves is well‐known, to the best of our knowledge this is the first construction of viscous traveling wave solutions. Our proof involves a number of novel analytic ingredients, including: the study of an overdetermined Stokes problem and its underdetermined adjoint problem, a delicate asymptotic development of the symbol for a normal‐stress to normal‐Dirichlet map defined via the Stokes operator, a new scale of specialized anisotropic Sobolev spaces, and the study of a pseudodifferential operator that synthesizes the various operators acting on the free surface functions. © 2022 The Authors.Communications on Pure and Applied Mathematicspublished by Wiley Periodicals LLC. 
    more » « less