skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HV geometry for signal comparison
In order to compare and interpolate signals, we investigate a Riemannian geometry on the space of signals. The metric allows discontinuous signals and measures both horizontal (thus providing many benefits of the Wasserstein metric) and vertical deformations. Moreover, it allows for signed signals, which overcomes the main deficiency of optimal transportation-based metrics in signal processing. We characterize the metric properties of the space of signals and establish the regularity and stability of geodesics. Furthermore, we introduce an efficient numerical scheme to compute the geodesics and present several experiments which highlight the nature of the metric.  more » « less
Award ID(s):
2206069
PAR ID:
10519787
Author(s) / Creator(s):
; ;
Publisher / Repository:
Americal Mathematical Society
Date Published:
Journal Name:
Quarterly of Applied Mathematics
Volume:
82
Issue:
2
ISSN:
0033-569X
Page Range / eLocation ID:
391 to 430
Subject(s) / Keyword(s):
signal comparison, geometry on the space of functions
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a method to analyze the three-dimensional nonholonomic system known as the Brockett integrator and to derive the (energy) optimal trajectories between two given points. For systems with nonholonomic constraint, it is well-known that the energy optimal trajectories corresponds to sub-Riemannian geodesics under a proper sub-Riemannian metric. Our method uses symmetry reduction and an analysis of the quotient space associated with the action of a (symmetry) group on R^3. By lifting the Riemannian geodesics with respect to an appropriate metric from the quotient space back to the original space R^3, we derive the optimal trajectories of the original problem. 
    more » « less
  2. We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $$S$$ . Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $$S$$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem. 
    more » « less
  3. Abstract Systems consisting of spheres rolling on elastic membranes have been used to introduce a core conceptual idea of General Relativity: how curvature guides the movement of matter. However, such schemes cannot accurately represent relativistic dynamics in the laboratory because of the dominance of dissipation and external gravitational fields. Here we demonstrate that an “active” object (a wheeled robot), which moves in a straight line on level ground and can alter its speed depending on the curvature of the deformable terrain it moves on, can exactly capture dynamics in curved relativistic spacetimes. Via the systematic study of the robot’s dynamics in the radial and orbital directions, we develop a mapping of the emergent trajectories of a wheeled vehicle on a spandex membrane to the motion in a curved spacetime. Our mapping demonstrates how the driven robot’s dynamics mix space and time in a metric, and shows how active particles do not necessarily follow geodesics in the real space but instead follow geodesics in a fiducial spacetime. The mapping further reveals how parameters such as the membrane elasticity and instantaneous speed allow the programming of a desired spacetime, such as the Schwarzschild metric near a non-rotating blackhole. Our mapping and framework facilitate creation of a robophysical analog to a general relativistic system in the laboratory at low cost that can provide insights into active matter in deformable environments and robot exploration in complex landscapes. 
    more » « less
  4. Given a projective Finsler metric in a convex domain in the projective plane, that is, a metric in which geodesics are straight lines, consider the respective Finsler billiard system. Choose a generic point inside the table and consider the billiard trajectories that start at this point and undergo N reflection off the boundary. The envelope of the resulting 1-parameter family of straight lines is the Nth caustic by reflection. We prove that, for every N, it has at least four cusps, generalizing a similar result for Euclidean metric, obtained recently jointly with G. Bor. 
    more » « less
  5. Abstract In this article, we propose an Outer space analog for the principal stratum of the unit tangent bundle to the Teichmüller space $${\mathcal{T}}(S)$$ of a closed hyperbolic surface $$S$$. More specifically, we focus on properties of the geodesics in Teichmüller space determined by the principal stratum. We show that the analogous Outer space “principal” periodic geodesics share certain stability properties with the principal stratum geodesics of Teichmüller space. We also show that the stratification of periodic geodesics in Outer space exhibits some new pathological phenomena not present in the Teichmüller space context. 
    more » « less