skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Stable Strata of Geodesics in Outer Space
Abstract In this article, we propose an Outer space analog for the principal stratum of the unit tangent bundle to the Teichmüller space ${\mathcal{T}}(S)$ of a closed hyperbolic surface $S$. More specifically, we focus on properties of the geodesics in Teichmüller space determined by the principal stratum. We show that the analogous Outer space “principal” periodic geodesics share certain stability properties with the principal stratum geodesics of Teichmüller space. We also show that the stratification of periodic geodesics in Outer space exhibits some new pathological phenomena not present in the Teichmüller space context.  more » « less
Award ID(s):
1405146 1710868 1905641
NSF-PAR ID:
10112783
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2019
Issue:
14
ISSN:
1073-7928
Page Range / eLocation ID:
4549 to 4578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Let be the three‐dimensional space form of constant curvature , that is, Euclidean space , the sphere , or hyperbolic space . Let be a smooth, closed, strictly convex surface in . We define an outer billiard map on the four‐dimensional space of oriented complete geodesics of , for which the billiard table is the subset of consisting of all oriented geodesics not intersecting . We show that is a diffeomorphism when is quadratically convex. For , has a Kähler structure associated with the Killing form of . We prove that is a symplectomorphism with respect to its fundamental form and that can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in defined in terms of the standard symplectic structure. We show that does not preserve the fundamental symplectic form on associated with the cross product on , for . We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points.

     
    more » « less
  2. null (Ed.)
    Abstract We present a cohomological proof that recurrence of suitable Teichmüller geodesics impliesunique ergodicity of their terminal foliations.This approach also yields concrete estimates for periodic foliations andnew results for polygonal billiards. 
    more » « less
  3. We consider the derivative \begin{document}$ D\pi $\end{document} of the projection \begin{document}$ \pi $\end{document} from a stratum of Abelian or quadratic differentials to Teichmüller space. A closed one-form \begin{document}$ \eta $\end{document} determines a relative cohomology class \begin{document}$ [\eta]_\Sigma $\end{document}, which is a tangent vector to the stratum. We give an integral formula for the pairing of \begin{document}$ D\pi([\eta]_\Sigma) $\end{document} with a cotangent vector to Teichmüller space (a quadratic differential). We derive from this a comparison between Hodge and Teichmüller norms, which has been used in the work of Arana-Herrera on effective dynamics of mapping class groups, and which may clarify the relationship between dynamical and geometric hyperbolicity results in Teichmüller theory.

     
    more » « less
  4. We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on a surface $S$ . Some of our results on the coarse geometry of this metric apply to arbitrary surfaces $S$ of finite type; however, we focus particular attention on the case where the surface is a once-punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem. 
    more » « less
  5. null (Ed.)
    In this paper, we construct examples of Weil–Petersson geodesics with nonminimal ending laminations which have [Formula: see text]-dimensional limit sets in the Thurston compactification of Teichmüller space. 
    more » « less