skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polynomial progressions in topological fields
Abstract Let$$P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$$be polynomials with distinct degrees, no constant terms and coefficients in a general local field$$\mathbb {K}$$. We give a quantitative count of the number of polynomial progressions$$x, x+P_1(y), \ldots , x + P_m(y)$$lying in a set$$S\subseteq \mathbb {K}$$of positive density. The proof relies on a general$$L^{\infty }$$inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex andp-adic analysis.  more » « less
Award ID(s):
2154712
PAR ID:
10630009
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
12
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let$$\varphi _1,\ldots ,\varphi _r\in {\mathbb Z}[z_1,\ldots z_k]$$be integral linear combinations of elementary symmetric polynomials with$$\text {deg}(\varphi _j)=k_j\ (1\le j\le r)$$, where$$1\le k_1<\cdots . Subject to the condition$$k_1+\cdots +k_r\ge \tfrac {1}{2}k(k-~1)+2$$, we show that there is a paucity of nondiagonal solutions to the Diophantine system$$\varphi _j({\mathbf x})=\varphi _j({\mathbf y})\ (1\le j\le r)$$. 
    more » « less
  2. Abstract The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let$$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where$$f: X \to {\Bbb R}$$,Xa set, finite or infinite, andKand$$\mu $$denote a suitable kernel and a measure, respectively. Given a connected ordered graphGonnvertices, consider the multi-linear form$$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where$${\mathcal E}(G)$$is the edge set ofG. Define$$\Lambda _G(p_1, \ldots , p_n)$$as the smallest constant$$C>0$$such that the inequality(0.1)$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions$$f_i$$,$$1\le i\le n$$, onX. The basic question is, how does the structure ofGand the mapping properties of the operator$$T_K$$influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case$$X={\Bbb F}_q^d$$, thed-dimensional vector space over the field withqelements,$$K(x^i,x^j)$$is the indicator function of the sphere evaluated at$$x^i-x^j$$, and connected graphsGwith at most four vertices. 
    more » « less
  3. Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials. 
    more » « less
  4. Abstract Let$${\mathbf {x}}_{n \times n}$$be an$$n \times n$$matrix of variables, and let$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$$be the polynomial ring in these variables over a field$${\mathbb {F}}$$. We study the ideal$$I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$$generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$is the generating function of permutations in$${\mathfrak {S}}_n$$by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space ofk-local permutation statistics. We also calculate the structure of$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$as a graded$${\mathfrak {S}}_n \times {\mathfrak {S}}_n$$-module. 
    more » « less
  5. Abstract A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary$$r$$-colouring of the complete$$k$$-uniform hypergraph$$K_n^k$$when$$k\geq 2$$and$$k\in \{r-1,r\}$$. We prove a result which says that if one replaces$$K_n^k$$in Gyárfás’ theorem by any ‘expansive’$$k$$-uniform hypergraph on$$n$$vertices (that is, a$$k$$-uniform hypergraph$$G$$on$$n$$vertices in which$$e(V_1, \ldots, V_k)\gt 0$$for all disjoint sets$$V_1, \ldots, V_k\subseteq V(G)$$with$$|V_i|\gt \alpha$$for all$$i\in [k]$$), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on$$r$$and$$\alpha$$). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms. Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary$$r$$-partite$$r$$-uniform hypergraph$$H$$with$$n$$edges in which every set of$$k$$edges has a common intersection. In this language, our result says that if one replaces the condition that every set of$$k$$edges has a common intersection with the condition that for every collection of$$k$$disjoint sets$$E_1, \ldots, E_k\subseteq E(H)$$with$$|E_i|\gt \alpha$$, there exists$$(e_1, \ldots, e_k)\in E_1\times \cdots \times E_k$$such that$$e_1\cap \cdots \cap e_k\neq \emptyset$$, then the smallest possible maximum degree of$$H$$is essentially the same (within a small error term depending on$$r$$and$$\alpha$$). We prove our results in this dual setting. 
    more » « less