skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MCell4 with BioNetGen: A Monte Carlo simulator of rule-based reaction-diffusion systems with Python interface
Biochemical signaling pathways in living cells are often highly organized into spatially segregated volumes, membranes, scaffolds, subcellular compartments, and organelles comprising small numbers of interacting molecules. At this level of granularity stochastic behavior dominates, well-mixed continuum approximations based on concentrations break down and a particle-based approach is more accurate and more efficient. We describe and validate a new version of the open-source MCell simulation program (MCell4), which supports generalized 3D Monte Carlo modeling of diffusion and chemical reaction of discrete molecules and macromolecular complexes in solution, on surfaces representing membranes, and combinations thereof. The main improvements in MCell4 compared to the previous versions, MCell3 and MCell3-R, include a Python interface and native BioNetGen reaction language (BNGL) support. MCell4’s Python interface opens up completely new possibilities for interfacing with external simulators to allow creation of sophisticated event-driven multiscale/multiphysics simulations. The native BNGL support, implemented through a new open-source library libBNG (also introduced in this paper), provides the capability to run a given BNGL model spatially resolved in MCell4 and, with appropriate simplifying assumptions, also in the BioNetGen simulation environment, greatly accelerating and simplifying model validation and comparison.  more » « less
Award ID(s):
1707356 2014862
PAR ID:
10519807
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Meier-Schellersheim, Martin
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
20
Issue:
4
ISSN:
1553-7358
Page Range / eLocation ID:
e1011800
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schneidman-Duhovny, Dina (Ed.)
    Gmxapi provides an integrated, native Python API for both standard and advanced molecular dynamics simulations in GROMACS. The Python interface permits multiple levels of integration with the core GROMACS libraries, and legacy support is provided via an interface that mimics the command-line syntax, so that all GROMACS commands are fully available. Gmxapi has been officially supported since the GROMACS 2019 release and is enabled by default in current versions of the software. Here we describe gmxapi 0.3 and later. Beyond simply wrapping GROMACS library operations, the API permits several advanced operations that are not feasible using the prior command-line interface. First, the API allows custom user plugin code within the molecular dynamics force calculations, so users can execute custom algorithms without modifying the GROMACS source. Second, the Python interface allows tasks to be dynamically defined, so high-level algorithms for molecular dynamics simulation and analysis can be coordinated with loop and conditional operations. Gmxapi makes GROMACS more accessible to custom Python scripting while also providing support for high-level data-flow simulation algorithms that were previously feasible only in external packages. 
    more » « less
  2. Numerical simulation of the form and characteristics of Earth’s surface provides insight into its evolution. Landlab is an Open Source Python package that contains modularized elements of numerical models for Earth’s surface, thus reducing time required for researchers to create new or reimplement existing models. Landlab contains a gridding engine which represents the model domain as a dual graph of structured quadrilaterals (e.g., raster) or irregular Voronoi polygon-Delaunay triangle mesh (e.g., regular hexagons, radially symmetric meshes, fully irregular meshes). Landlab also contains components— modular implementations of single physical processes—and a suite of utilities which support numerical methods, input/output, and visualization. This contribution describes package development since version 1.0 and backward-compatibility breaking changes which necessitates the new major release, version 2.0. Substantial changes include refactoring the grid, improving the component standard interface, dropping Python 2 support, and creating 30 new components—for a total of 57 components in the Landlab package. We describe reasons why many changes were made in order to provide insight to designers of future packages. We conclude by discussing lessons about the dynamics of scientific software development gained from the experience of using, developing, maintaining, and teaching with Landlab. 
    more » « less
  3. Abstract. Numerical simulation of the form and characteristics of Earth's surface provides insight into its evolution. Landlab is an open-source Python package that contains modularized elements of numerical models for Earth's surface, thus reducing time required for researchers to create new or reimplement existing models. Landlab contains a gridding engine which represents the model domain as a dual graph of structured quadrilaterals (e.g., raster) or irregular Voronoi polygon–Delaunay triangle mesh (e.g., regular hexagons, radially symmetric meshes, and fully irregular meshes). Landlab also contains components – modular implementations of single physical processes – and a suite of utilities that support numerical methods, input/output, and visualization. This contribution describes package development since version 1.0 and backward-compatibility-breaking changes that necessitate the new major release, version 2.0. Substantial changes include refactoring the grid, improving the component standard interface, dropping Python 2 support, and creating 31 new components – for a total of 58 components in the Landlab package. We describe reasons why many changes were made in order to provide insight for designers of future packages. We conclude by discussing lessons about the dynamics of scientific software development gained from the experience of using, developing, maintaining, and teaching with Landlab. 
    more » « less
  4. Kemp, Melissa L. (Ed.)
    Tissue Forge is an open-source interactive environment for particle-based physics, chemistry and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore models and virtual experiments based on soft condensed matter physics at multiple scales, from the molecular to the multicellular, using a simple, consistent interface. While Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and tissue biophysics, it supports applications ranging from classic molecular dynamics to agent-based multicellular systems with dynamic populations. Tissue Forge users can build and interact with models and simulations in real-time and change simulation details during execution, or execute simulations off-screen and/or remotely in high-performance computing environments. Tissue Forge provides a growing library of built-in model components along with support for user-specified models during the development and application of custom, agent-based models. Tissue Forge includes an extensive Python API for model and simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as well as C and C++ APIs for integrated applications with other software tools. Tissue Forge supports installations on 64-bit Windows, Linux and MacOS systems and is available for local installation via conda. 
    more » « less
  5. Open OnDemand (openondemand.org) is an NSF-funded open-source HPC platform currently in use at over 200 HPC centers around the world. It is an intuitive, innovative, and interactive interface to remote computing resources. Open OnDemand (OOD) helps computational researchers and students efficiently utilize remote computing resources by making them easy to access from any device. It helps computer center staff support a wide range of clients by simplifying the user interface and experience. 
    more » « less