skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protocol to implement a computational pipeline for biomedical discovery based on a biomedical knowledge graph
Award ID(s):
1750326 2212175
PAR ID:
10519835
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
STAR Protocols
Volume:
4
Issue:
4
ISSN:
2666-1667
Page Range / eLocation ID:
102666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To address the rapid growth of scientific publications and data in biomedical research, knowledge graphs (KGs) have become a critical tool for integrating large volumes of heterogeneous data to enable efficient information retrieval and automated knowledge discovery. However, transforming unstructured scientific literature into KGs remains a significant challenge, with previous methods unable to achieve human-level accuracy. Here we used an information extraction pipeline that won first place in the LitCoin Natural Language Processing Challenge (2022) to construct a large-scale KG named iKraph using all PubMed abstracts. The extracted information matches human expert annotations and significantly exceeds the content of manually curated public databases. To enhance the KG’s comprehensiveness, we integrated relation data from 40 public databases and relation information inferred from high-throughput genomics data. This KG facilitates rigorous performance evaluation of automated knowledge discovery, which was infeasible in previous studies. We designed an interpretable, probabilistic-based inference method to identify indirect causal relations and applied it to real-time COVID-19 drug repurposing from March 2020 to May 2023. Our method identified around 1,200 candidate drugs in the first 4 months, with one-third of those discovered in the first 2 months later supported by clinical trials or PubMed publications. These outcomes are very challenging to attain through alternative approaches that lack a thorough understanding of the existing literature. A cloud-based platform (https://biokde.insilicom.com) was developed for academic users to access this rich structured data and associated tools. 
    more » « less
  2. Abstract Clinical, biomedical, and translational science has reached an inflection point in the breadth and diversity of available data and the potential impact of such data to improve human health and well‐being. However, the data are often siloed, disorganized, and not broadly accessible due to discipline‐specific differences in terminology and representation. To address these challenges, the Biomedical Data Translator Consortium has developed and tested a pilot knowledge graph‐based “Translator” system capable of integrating existing biomedical data sets and “translating” those data into insights intended to augment human reasoning and accelerate translational science. Having demonstrated feasibility of the Translator system, the Translator program has since moved into development, and the Translator Consortium has made significant progress in the research, design, and implementation of an operational system. Herein, we describe the current system’s architecture, performance, and quality of results. We apply Translator to several real‐world use cases developed in collaboration with subject‐matter experts. Finally, we discuss the scientific and technical features of Translator and compare those features to other state‐of‐the‐art, biomedical graph‐based question‐answering systems. 
    more » « less
  3. This study aimed to provide a review of the current status of the biomimetic adhesives that have the potential for clinical application. Biomimetic materials emulate compounds and properties with a biological origin. They have grown to be more relevant in medical fields due to biocompatibility, low toxicity, and a less damaging impact on the environment. Bonding living tissues has proved to be difficult due to the adverse immune reactions to foreign materials and the wet environment of the damaged area. There is a need for biomimetic adhesives due to the shortcomings of synthetic adhesives and metal tools required for wound closure. Despite differences in developmental approaches and organismal properties, the biomimetic adhesives developed have the potential to be used in wet environments with enough strength to help bond the tissues together without any supporting materials. 
    more » « less