skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-throughput target trial emulation for Alzheimer’s disease drug repurposing with real-world data
Target trial emulation is the process of mimicking target randomized trials using real-world data, where effective confounding control for unbiased treatment effect estimation remains a main challenge. Although various approaches have been proposed for this challenge, a systematic evaluation is still lacking. Here we emulated trials for thousands of medications from two large-scale real-world data warehouses, covering over 10 years of clinical records for over 170 million patients, aiming to identify new indications of approved drugs for Alzheimer’s disease. We assessed different propensity score models under the inverse probability of treatment weighting framework and suggested a model selection strategy for improved baseline covariate balancing. We also found that the deep learning-based propensity score model did not necessarily outperform logistic regression-based methods in covariate balancing. Finally, we highlighted five top-ranked drugs (pantoprazole, gabapentin, atorvastatin, fluticasone, and omeprazole) originally intended for other indications with potential benefits for Alzheimer’s patients.  more » « less
Award ID(s):
1750326
PAR ID:
10519837
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group UK
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bias in causal comparisons has a correspondence with distributional imbalance of covariates between treatment groups. Weighting strategies such as inverse propensity score weighting attempt to mitigate bias by either modeling the treatment assignment mechanism or balancing specified covariate moments. This article introduces a new weighting method, called energy balancing, which instead aims to balance weighted covariate distributions. By directly targeting distributional imbalance, the proposed weighting strategy can be flexibly utilized in a wide variety of causal analyses without the need for careful model or moment specification. Our energy balancing weights (EBW) approach has several advantages over existing weighting techniques. First, it offers a model-free and robust approach for obtaining covariate balance that does not require tuning parameters, obviating the need for modeling decisions of secondary nature to the scientific question at hand. Second, since this approach is based on a genuine measure of distributional balance, it provides a means for assessing the balance induced by a given set of weights for a given dataset. We demonstrate the effectiveness of this EBW approach in a suite of simulation experiments, and in studies on the safety of right heart catheterization and on three additional studies using electronic health record data. 
    more » « less
  2. Inverse probability of treatment weighting (IPTW), which has been used to estimate average treatment effects (ATE) using observational data, tenuously relies on the positivity assumption and the correct specification of the treatment assignment model, both of which are problematic assumptions in many observational studies. Various methods have been proposed to overcome these challenges, including truncation, covariate‐balancing propensity scores, and stable balancing weights. Motivated by an observational study in spine surgery, in which positivity is violated and the true treatment assignment model is unknown, we present the use of optimal balancing by kernel optimal matching (KOM) to estimate ATE. By uniformly controlling the conditional mean squared error of a weighted estimator over a class of models, KOM simultaneously mitigates issues of possible misspecification of the treatment assignment model and is able to handle practical violations of the positivity assumption, as shown in our simulation study. Using data from a clinical registry, we apply KOM to compare two spine surgical interventions and demonstrate how the result matches the conclusions of clinical trials that IPTW estimates spuriously refute. 
    more » « less
  3. A common goal in observational research is to estimate marginal causal effects in the presence of confounding variables. One solution to this problem is to use the covariate distribution to weight the outcomes such that the data appear randomized. The propensity score is a natural quantity that arises in this setting. Propensity score weights have desirable asymptotic properties, but they often fail to adequately balance covariate data in finite samples. Empirical covariate balancing methods pose as an appealing alternative by exactly balancing the sample moments of the covariate distribution. With this objective in mind, we propose a framework for estimating balancing weights by solving a constrained convex program, where the criterion function to be optimized is a Bregman distance. We then show that the different distances in this class render identical weights to those of other covariate balancing methods. A series of numerical studies are presented to demonstrate these similarities. 
    more » « less
  4. Abstract It is common to conduct causal inference in matched observational studies by proceeding as though treatment assignments within matched sets are assigned uniformly at random and using this distribution as the basis for inference. This approach ignores observed discrepancies in matched sets that may be consequential for the distribution of treatment, which are succinctly captured by within-set differences in the propensity score. We address this problem via covariate-adaptive randomization inference, which modifies the permutation probabilities to vary with estimated propensity score discrepancies and avoids requirements to exclude matched pairs or model an outcome variable. We show that the test achieves type I error control arbitrarily close to the nominal level when large samples are available for propensity score estimation. We characterize the large-sample behaviour of the new randomization test for a difference-in-means estimator of a constant additive effect. We also show that existing methods of sensitivity analysis generalize effectively to covariate-adaptive randomization inference. Finally, we evaluate the empirical value of combining matching and covariate-adaptive randomization procedures using simulations and analyses of genetic damage among welders and right-heart catheterization in surgical patients. 
    more » « less
  5. For large observational studies lacking a control group (unlike randomized controlled trials, RCT), propensity scores (PS) are often the method of choice to account for pre-treatment confounding in baseline characteristics, and thereby avoid substantial bias in treatment estimation. A vast majority of PS techniques focus on average treatment effect estimation, without any clear consensus on how to account for confounders, especially in a multiple treatment setting. Furthermore, for time-to event outcomes, the analytical framework is further complicated in presence of high censoring rates (sometimes, due to non-susceptibility of study units to a disease), imbalance between treatment groups, and clustered nature of the data (where, survival outcomes appear in groups). Motivated by a right-censored kidney transplantation dataset derived from the United Network of Organ Sharing (UNOS), we investigate and compare two recent promising PS procedures, (a) the generalized boosted model (GBM), and (b) the covariate-balancing propensity score (CBPS), in an attempt to decouple the causal effects of treatments (here, study subgroups, such as hepatitis C virus (HCV) positive/negative donors, and positive/negative recipients) on time to death of kidney recipients due to kidney failure, post transplantation. For estimation, we employ a 2-step procedure which addresses various complexities observed in the UNOS database within a unified paradigm. First, to adjust for the large number of confounders on the multiple sub-groups, we fit multinomial PS models via procedures (a) and (b). In the next stage, the estimated PS is incorporated into the likelihood of a semi-parametric cure rate Cox proportional hazard frailty model via inverse probability of treatment weighting, adjusted for multi-center clustering and excess censoring, Our data analysis reveals a more informative and superior performance of the full model in terms of treatment effect estimation, over sub-models that relaxes the various features of the event time dataset. 
    more » « less