skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GREEN FUNCTIONS IN METRIC MEASURE SPACES
Abstract. We study existence and uniqueness of Green functions for the Cheeger Q- Laplacian in metric measure spaces that are Ahlfors Q-regular and support a Q-Poincar ́e inequality with Q > 1. We prove uniqueness of Green functions both in the case of relatively compact domains, and in the global (unbounded) case. We also prove existence of global Green functions in unbounded spaces, complementing the existing results in relatively compact domains proved recently in [BBL20].  more » « less
Award ID(s):
2141297
PAR ID:
10519885
Author(s) / Creator(s):
; ;
Publisher / Repository:
arxiv
Date Published:
Format(s):
Medium: X
Institution:
Arxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Consider the elastic scattering of a plane or point incident wave by an unbounded and rigid rough surface. The angular spectrum representation (ASR) for the time-harmonic Navier equation is derived in three dimensions. The ASR is utilized as a radiation condition to the elastic rough surface scattering problem. The uniqueness is proved through a Rellich-type identity for surfaces given by uniformly Lipschitz functions. In the case of flat surfaces with local perturbations, an equivalent variational formulation is deduced in a truncated bounded domain and the existence of solutions are shown for general incoming waves. The main ingredient of the proof is the radiating behavior of the Green tensor to the first boundary value problem of the Navier equation in a half-space. 
    more » « less
  2. Following ideas of Caffarelli and Silvestre in [20], and using recent progress in hyperbolic fillings, we define fractional p-Laplacians (−∆p)θ with 0 < θ < 1 on any compact, doubling metric measure space (Z, d, ν), and prove existence, regularity and stability for the non- homogenous non-local equation (−∆p)θu = f. These results, in turn, rest on the new existence, global Hölder regularity and stability theorems that we prove for the Neumann problem for p-Laplacians ∆p, 1 < p < ∞, in bounded domains of measure metric spaces endowed with a doubling measure that supports a Poincaré inequality. Our work also includes as special cases much of the previous results by other authors in the Euclidean, Riemannian and Carnot group settings. Unlike other recent contributions in the metric measure spaces context, our work does not rely on the assumption that (Z, d, ν) supports a Poincaré inequality. 
    more » « less
  3. Abstract We prove the existence and uniqueness of global smooth solutions of the critical dissipative SQG equation in bounded domains in . We introduce a new methodology of transforming the single nonlocal nonlinear evolution equation in a bounded domain into an interacting system of extended nonlocal nonlinear evolution equations in the whole space. The proof then uses the method of the nonlinear maximum principle for nonlocal operators in the extended system. 
    more » « less
  4. We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions. 
    more » « less
  5. Abstract We provide a complete local well-posedness theory inHsbased Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the$$C^{1,\frac{1}{2}}$$regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in$$L_T^1W^{1,\infty}$$and the free surface is in$$L_T^1C^{1,\frac{1}{2}}$$, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains. 
    more » « less