$\mathcal {H}_{2}$- and $\mathcal {H}_\infty$-Optimal Model Predictive Controllers for Robust Legged Locomotion
- Award ID(s):
- 2306984
- PAR ID:
- 10519900
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Open Journal of Control Systems
- Volume:
- 3
- ISSN:
- 2694-085X
- Page Range / eLocation ID:
- 225 to 238
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.more » « less
-
This paper presents a scalable tensor-based approach to computing controllability and observability-type energy functions for nonlinear dynamical systems with polynomial drift and linear input and output maps. Using Kronecker product polynomial expansions, we convert the Hamilton- Jacobi-Bellman partial differential equations for the energy functions into a series of algebraic equations for the coefficients of the energy functions. We derive the specific tensor structure that arises from the Kronecker product representation and analyze the computational complexity to efficiently solve these equations. The convergence and scalability of the proposed energy function computation approach is demonstrated on a nonlinear reaction-diffusion model with cubic drift nonlinearity, for which we compute degree 3 energy function approximations in n = 1023 dimensions and degree 4 energy function approximations in n = 127 dimensions.more » « less
An official website of the United States government

