skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum interference in atom-exchange reactions
Chemical reactions, in which bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigated this question by studying the 2KRb K 2 + Rb2reaction at 500 nanokelvins, focusing on the nuclear spin degrees of freedom. We prepared the initial nuclear spins in KRb (potassium-rubidium) in an entangled state by lowering the magnetic field to where the spin-spin interaction dominates and characterized the preserved coherence in nuclear spin wave function after the reaction. We observed an interference pattern that is consistent with full coherence at the end of the reaction, suggesting that entanglement prepared within the reactants could be redistributed through the atom-exchange process.  more » « less
Award ID(s):
2332539 2317134
PAR ID:
10519921
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
384
Issue:
6700
ISSN:
0036-8075
Page Range / eLocation ID:
1117 to 1121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient is J s x T = (4.9 ± 0.9) × 106 ( 2 e ) A   m 2 K   μ m 1 , and a lower bound for the magnitude of the spin Nernst ratio is −0.61 ± 0.11. The spin Nernst ratio for Bi2Se3is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy. 
    more » « less
  2. Abstract The production of a pair of τ leptons via photon–photon fusion, γ γ τ τ , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of γ γ τ τ is σ obs fid = 12.4 3.1 + 3.8 fb . Constraints are set on the contributions to the anomalous magnetic moment ( a τ ) and electric dipole moments ( d τ ) of the τ lepton originating from potential effects of new physics on the γ τ τ vertex: a τ = 0.0009 0.0031 + 0.0032 and | d τ | < 2.9 × 10 17 e cm (95% confidence level), consistent with the standard model. 
    more » « less
  3. Many sub-Neptune exoplanets have been believed to be composed of a thick hydrogen-dominated atmosphere and a high-temperature heavier-element-dominant core. From an assumption that there is no chemical reaction between hydrogen and silicates/metals at the atmosphere–interior boundary, the cores of sub-Neptunes have been modeled with molten silicates and metals (magma) in previous studies. In large sub-Neptunes, pressure at the atmosphere–magma boundary can reach tens of gigapascals where hydrogen is a dense liquid. A recent experiment showed that hydrogen can induce the reduction of Fe 2 + in (Mg,Fe)O to Fe 0 metal at the pressure–temperature conditions relevant to the atmosphere–interior boundary. However, it is unclear whether Mg, one of the abundant heavy elements in the planetary interiors, remains oxidized or can be reduced by H. Our experiments in the laser-heated diamond-anvil cell found that heating of MgO + Fe to 3,500 to 4,900 K (close to or above their melting temperatures) in an H medium leads to the formation of Mg 2 FeH 6 and H 2 O at 8 to 13 GPa. At 26 to 29 GPa, the behavior of the system changes, and Mg–H in an H fluid and H 2 O were detected with separate FeH x . The observations indicate the dissociation of the Mg–O bond by H and subsequent production of hydride and water. Therefore, the atmosphere–magma interaction can lead to a fundamentally different mineralogy for sub-Neptune exoplanets compared with rocky planets. The change in the chemical reaction at the higher pressures can also affect the size demographics (i.e., “radius cliff”) and the atmosphere chemistry of sub-Neptune exoplanets. 
    more » « less
  4. While hydrogen-rich materials have been demonstrated to exhibit high Tcsuperconductivity at high pressures, there is an ongoing search for ternary, quaternary, and more chemically complex hydrides that achieve such high critical temperatures at much lower pressures. First-principles searches are impeded by the computational complexity of solving the Eliashberg equations for large, complex crystal structures. Here, we adopt a simplified approach using electronic indicators previously established to be correlated with superconductivity in hydrides. This is used to study complex hydride structures, which are predicted to exhibit promisingly high critical temperatures for superconductivity. In particular, we propose three classes of hydrides inspired by the Fm 3 ¯ m RH 3 structures that exhibit strong hydrogen network connectivity, as defined through the electron localization function. The first class [RH 11 X 3 Y] is based on a Pm 3 ¯ m structure showing moderately high Tc, where the Tcestimate from electronic properties is compared with direct Eliashberg calculations and found to be surprisingly accurate. The second class of structures [(RH 11 ) 2 X 6 YZ] improves on this with promisingly high density of states with dominant hydrogen character at the Fermi energy, typically enhancing Tc. The third class [(R 1 H 11 )(R 2 H 11 )X 6 YZ] improves the strong hydrogen network connectivity by introducing anisotropy in the hydrogen network through a specific doping pattern. These design principles and associated model structures provide flexibility to optimize both Tcand the structural stability of complex hydrides. 
    more » « less
  5. The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we infer H 0 = 64.8 4.3 + 4.4  kilometers per second per megaparsec . Using the two models most consistent with the observations, we find H 0 = 66.6 3.3 + 4.1  kilometers per second per megaparsec . The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster. 
    more » « less