It has recently been shown that the evolution of a linear Partial Differential Equation (PDE) can be more conveniently represented in terms of the evolution of a higher spatial derivative of the state. This higher spatial derivative (termed the `fundamental state') lies in $$L_2$$ - requiring no auxiliary boundary conditions or continuity constraints. Such a representation (termed a Partial Integral Equation or PIE) is then defined in terms of an algebra of bounded integral operators (termed Partial Integral (PI) operators) and is constructed by identifying a unitary map from the fundamental state to the state of the original PDE. Unfortunately, when the PDE is nonlinear, the dynamics of the associated fundamental state are no longer parameterized in terms of PI operators. However, in this paper we show that such dynamics can be compactly represented using a new tensor algebra of partial integral operators acting on the tensor product of the fundamental state. We further show that this tensor product of the fundamental state forms a natural distributed equivalent of the monomial basis used in representation of polynomials on a finite-dimensional space. This new representation is then used to provide a simple SDP-based Lyapunov test of stability of quadratic PDEs. The test is applied to three illustrative examples of quadratic PDEs.
more »
« less
Equilibrium states for non-uniformly expanding skew products
We study equilibrium states for a class of non-uniformly expanding skew products, and show how a family of fiberwise transfer operators can be used to define the conditional measures along fibers of the product. We prove that the pushforward of the equilibrium state onto the base of the product is itself an equilibrium state for a Hölder potential defined via these fiberwise transfer operators.
more »
« less
- PAR ID:
- 10519958
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Ergodic Theory and Dynamical Systems
- ISSN:
- 0143-3857
- Page Range / eLocation ID:
- 1 to 22
- Subject(s) / Keyword(s):
- 37D35 37C30 equilibrium states RPF transfer operator non-uniformly expanding skew products
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differential structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points.more » « less
-
We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differential structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points.more » « less
-
null (Ed.)Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric inducesa semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p . We also propose a conjectural generalization of this result for relativetwisted Kähler–Einstein metrics. Then we show that our conjecture holds trueif the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension).more » « less
-
Abstract We consider discrete one-dimensional Schrödinger operators whose potentials are generated by sampling along the orbits of a general hyperbolic transformation. Specifically, we show that if the sampling function is a non-constant Hölder continuous function defined on a subshift of finite type with a fully supported ergodic measure admitting a local product structure and a fixed point, then the Lyapunov exponent is positive away from a discrete set of energies. Moreover, for sampling functions in a residual subset of the space of Hölder continuous functions, the Lyapunov exponent is positive everywhere. If we consider locally constant or globally fiber bunched sampling functions, then the Lyapuonv exponent is positive away from a finite set. Moreover, for sampling functions in an open and dense subset of the space in question, the Lyapunov exponent is uniformly positive. Our results can be applied to any subshift of finite type with ergodic measures that are equilibrium states of Hölder continuous potentials. In particular, we apply our results to Schrödinger operators defined over expanding maps on the unit circle, hyperbolic automorphisms of a finite-dimensional torus, and Markov chains.more » « less
An official website of the United States government

