IntroductionElementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning. MethodsFramed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups. ResultsOne teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors. DiscussionWe discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction. 
                        more » 
                        « less   
                    
                            
                            Applied Education Programming: Four Exemplars in Environmental Literacy and Teacher Professional Development
                        
                    
    
            This paper shares four Sea Grant-funded projects from across the United States. The Hawai‘i project integrates Western science and Hawaiian culture in place- and community-based teaching. The Maryland program takes a project-based learning approach to aquaculture education in the formal education system. The Massachusetts (MIT) project focuses on state-of-the-art technology in engineering, robotics, and ocean science. The Virginia project emphasizes science communication and lesson plan design. What all four projects have in common is their focus on environmental literacy and teacher professional development in formal education. This approach aims to raise the quality of STEM instruction by expanding teachers’ knowledge, skills, and resources. Training teachers also efficiently utilizes resources by maximizing the number of students we ultimately reach, thereby creating sustainability. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2022937
- PAR ID:
- 10520076
- Publisher / Repository:
- The Oceanography Society
- Date Published:
- Journal Name:
- Oceanography
- Volume:
- 37
- Issue:
- 1
- ISSN:
- 1042-8275
- Page Range / eLocation ID:
- 54 to 59
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Preservice secondary science teachers often experience science learning in narrow and marginalizing ways in their science preparation. These experiences cause harm, particularly for preservice teachers of color. They also limit the disciplinary resources they can develop for later teaching science in ways that value and sustain their students' ways of knowing and being in the world. Our research explores possibilities for cultivating new spaces for preservice secondary science teachers to engage in science. In a content‐focused education course, we designed for and studied preservice teachers' engagement in expansive and connective sensemaking, incorporating heterogeneity, power, and historicity in pursuits of explanatory accounts of the natural world. In this article, we examined how this course design can support preservice teachers to attune to heterogeneity in ways of knowing in science and to connect to identity and historicity in scientific sensemaking. Our analysis suggests that students' final projects reflected attunements to diverse knowing, communicating, and relating in science and deep connections with their identities and future‐making, yet had fewer connections to sociohistorical narratives and structures. We developed illustrative case studies of four student projects, highlighting the personal, social, and political possibilities of creating space for future educators to imagine more expansive and connective forms of science. This study contributes a novel model for preservice science teacher education to support teacher learning to value and sustain their students' ways of knowing and being in the world.more » « less
- 
            To broaden indigenous students' participation in Computer Science (CS) education, we conducted a research practitioner partnership (RPP) project, where teachers were taught the CS principles lessons offered by Code.org and asked to integrate mobile application development within their current courses. Additionally, modules and guidance were provided on culturally responsive pedagogy (CRP), and an in-classroom implementation of a five-day lesson plan was co-created via a participatory approach. In this experience report, we describe the RPP organization and early findings from our collected teachers' pre/post survey, lesson plans, projects, and students' pre/post survey. The positive outcomes from our RPP project provided valuable teacher learning experiences and actionable, culturally responsive computing lesson plans for the indigenous community.more » « less
- 
            Abstract Socioscientific issues (SSI) are problems involving the deliberate use of scientific topics that require students to engage in dialogue, discussion, and debate. The purpose of this project is to utilize issues that are personally meaningful and engaging to students, require the use of evidence-based reasoning, and provide a context for scientific information. Social justice is the pursuit of equity and fairness in society by ensuring that all individuals have opportunities to challenge and address inequalities and injustices to create a more just and equitable society for all (Killen et al. Human Development 65:257–269, 2021). By connecting science, technology, engineering, and mathematics (STEM) concepts to personally meaningful contexts, SSI can empower students to consider how STEM-based issues reflect moral principles and elements of virtue in their own lives and the world around them (Zeidler et al. Science Education 89:357–377, 2005). We employed a qualitative research design to answer the following questions: (1) In what ways, if any, did teachers help students grow their knowledge and practices on social justice through socioscientific issues? (2) In teachers’ perceptions, what components of SSI did students learn and what are their challenges? (3) In teachers’ perceptions, what are students’ stances on social justice? After completing the first year and second-year professional development programs, grades 6–12 STEM teachers were asked to complete a reflection on classroom artifacts. Teachers were asked to select student artifacts (e.g. assignments, projects, essays, videos, etc.) that they thought exemplified the students’ learning of SSI and stance on social justice. Based on 21 teacher-submitted examples of exemplar student work, we saw the following example pedagogies to engage their students on social justice: (a) making connections to real-world experiences, (b) developing a community project, (c) examining social injustice, and (d) developing an agency to influence/make changes. According to teachers, the most challenging SSI for students was elucidating their own position/solution, closely followed by employing reflective scientific skepticism. Moreover, the students exemplified reflexivity, metacognition, authentic activity, and dialogic conversation. Using SSI in classrooms allows students to tackle real-world problems, blending science and societal concerns. This approach boosts understanding of scientific concepts and their relevance to society. Identifying methods like real-world connections and examining social injustice helps integrate social justice themes into science education through SSI. Overall, SSI promotes interdisciplinary learning, critical thinking, and informed decision-making, enriching science education socially. This study highlights the value of integrating SSI in science education to engage students with social justice.more » « less
- 
            Science education is an important component of a full education beginning in primary grades. In recent decades, research has identified young learners’ rich knowledge of the natural world and their potential to connect with sophisticated science ideas. Elementary teachers face many challenges to implementing reform-based science instruction in their classrooms. Some teachers may choose to enhance their students’ science experiences by introducing them to citizen science (CS) projects. Unfortunately, few CS projects offer substantial guidance for teachers seeking to implement the projects for instructional purposes, placing a heavy burden on teachers. To address these burdens, our research team collaborated with Teacher Advisory Group (TAG teachers) during the development and revision of educative support materials for two CS projects. We present data about how the TAG teachers informed our CS support materials’ revisions, how they implemented the two CS projects with and without educative support materials, and how they perceived their students’ classroom and outdoor experiences with the CS projects. These data demonstrate the importance of including teachers’ voices and experiences in reform efforts, particularly when trying to incorporate instructional elements that teachers may perceive as deviations from what they are expected to teach.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    