skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in Aerosols, Meteorology, and Radiation in the Southeastern U.S. Warming Hole Region during 2000 to 2019
Abstract Surface air temperatures in the southeastern United States that did not change from the climatological mean from 1900 to 2000 have increased since the year 2000. Analyzed herein are factors modulating the surface air temperatures in the region for a 20-yr period (2000–19) using space- and surface-based observations, and output from a reanalysis model. The 20-yr period is segregated into two decades, 2000–09 and 2010–19, corresponding to different tropospheric chemical regimes. Changes in seasonal and decadal averages are examined. The later decade experienced higher average surface air temperatures with significant warming during summer and fall seasons. Decadal and seasonal averages of cloud properties, column water vapor, rain rates, and top-of-atmosphere outgoing longwave radiation did not exhibit statistically significant differences between the two decades. The region experienced strong warm and moist advection during the winter months and very weak advection during the summer months. The later decade exhibited higher low-level moisture advection during the winter months than the earlier decade with insignificant changes in the temperature advection between the two decades. The later decade had significantly lower aerosol dry and liquid water mass during all seasons, along with lower aerosol optical depth, higher single scattering albedo, and lower top-of-the-atmosphere outgoing shortwave radiation during cloud-free conditions in the summer season. Collectively, these results suggest that changes in the aerosol direct radiative forcing are responsible for warming during summer months that experience weak advection and highlight seasonal differences in the temperature controlling mechanisms in the region.  more » « less
Award ID(s):
2024170
PAR ID:
10520103
Author(s) / Creator(s):
; ; ;
Editor(s):
Simpson, Isla; Waugh, Darryn
Publisher / Repository:
American Meteorology Society
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
23
ISSN:
0894-8755
Page Range / eLocation ID:
7725 to 7737
Subject(s) / Keyword(s):
Aerosols Shortwave radiation Aerosols/particulates
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical dry zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population. 
    more » « less
  2. The northeastern U.S. has experienced a rapid rise in extreme precipitation events and total precipitation due to climate change. Despite higher overall precipitation, long-term near-surface soil moisture at the Harvard Forest in Petersham, MA has decreased since 2010, a pattern also observed in other global temperate forest regions. In this study, we used more than thirty years of ecosystem-atmosphere water and carbon exchange at the Harvard Forest to understand the impact of precipitation extremes during the past decade on ecosystem water and carbon fluxes and the strength of land-atmosphere coupling. We found that in this mesic temperate forest, well-drained post-glacial soils rapidly drain surplus moisture from large rain events, while the remaining moisture necessary to preserve local humidity is quickly lost to evapotranspiration unless frequently replenished by rainfall. This region has also experienced two hot summer droughts during the past decade, causing further hydrological stress with carbon cycle implications. Furthermore, meteorological conditions in the nongrowing season have particularly shifted to warmer, drier conditions that set the stage for more frequent summer soil moisture deficits. In response to this past decade of hydrological extremes, we have observed a dampening of canopy light response curves, indicating lower rates of carbon uptake during the growing season and a parallel decline in ecosystem respiration as soils dry. More frequent dry conditions during key phenological windows, the intense delivery of rainfall during a shorter temporal window in the growing season, and rising summer temperatures and lower humidity have combined to decrease the ecosystem carbon uptake by photosynthesis and created large interannual variation in the strength of the net carbon sink at Harvard Forest during the past decade compared to the prior two decades of this study. 
    more » « less
  3. This work utilizes remotely sensed thermal data to understand how the release of thermal pollution from the Brayton Point Power Station (BPPS) affected the temperature behavior of Narragansett Bay. Building upon previous work with Landsat 5, a multi-satellite analysis is conducted that incorporates 582 scenes from Landsat 5, Landsat 7, and Landsat 8 over 1984–2021 to explain seasonal variability in effluent impacts, contrast data after the effluent ceased in 2011, identify patterns in temperature before and after effluent ceased using unsupervised learning, and track how recent warming trends compare to the BPPS impact. Stopping the thermal effluent corresponds to an immediate cooling of 0.26 ± 0.1°C in the surface temperature of Mt. Hope Bay with respect to the rest of Narragansett Bay with greater cooling of 0.62 ± 0.2°C found near Brayton Point; though, cooling since the period of maximal impact (1993–2000) totals 0.53 ± 0.2°C in Mt. Hope Bay and 1.04 ± 0.2°C at Brayton Point. During seasons with lower solar radiation (winter) and lower mean river input (autumn and late summer), the BPPS effluent impact is more prominent. The seasonal differences between the high impact and low impact periods indicate that river input played an important role in the heat balance when emissions were lower, but surface fluxes dominated when emissions were higher. Putting the BPPS effluent in context, Landsat data indicates that Narragansett Bay warmed 0.5–1.2°C over the period of measurement at an average rate of 0.23 ± 0.1°C/decade and that net warming in Mt. Hope Bay is near zero. This trend implies that Narragansett Bay has experienced climatic warming over the past four decades on the scale of the temperature anomaly in Mt. Hope Bay caused by the BBPS effluent. 
    more » « less
  4. Abstract Southwest North America is projected by models to aridify, defined as declining summer soil moisture, under the influence of rising greenhouse gases. Here, we investigate the driving mechanisms of aridification that connect the oceans, atmosphere, and land surface across seasons. The analysis is based on atmosphere model simulations forced by imposed sea surface temperatures (SSTs). For the historical period, these are the observed ones, and the model is run to 2041 using SSTs that account for realistic and plausible evolutions of Pacific Ocean and Atlantic Ocean interannual to decadal variability imposed on estimates of radiatively forced SST change. The results emphasize the importance of changes in precipitation throughout the year for declines in summer soil moisture. In the worst-case scenario, a cool tropical Pacific and warm North Atlantic lead to reduced cool season precipitation and soil moisture. Drier soils then persist into summer such that evapotranspiration reduces and soil moisture partially recovers. In the best-case scenario, the opposite states of the oceans lead to increased cool season precipitation but higher evapotranspiration prevents this from increasing summer soil moisture. Across the scenarios, atmospheric humidity is primarily controlled by soil moisture: drier soils lead to reduced evapotranspiration, lower air humidity, and higher vapor pressure deficit (VPD). Radiatively forced change reduces fall precipitation via anomalous transient eddy moisture flux divergence. Fall drying causes soils to enter winter dry such that, even in the best-case scenario of cool season precipitation increase, soil moisture remains dry. Radiative forcing reduces summer precipitation aided by reduced evapotranspiration from drier soils. Significance StatementSouthwest North America has long been projected to undergo aridification under rising greenhouse gases. In this model-based paper, we examine how coupling across seasons between the atmosphere and land system moves the region toward reduced summer soil moisture. The results show the dominant control on summer soil moisture by precipitation throughout the year. It also shows that even in best-case scenarios when changes in decadal modes of ocean variability lead to increases in cool season precipitation, rising spring and summer evapotranspiration means this does not translate into increased summer soil moisture. The work places projections of regional aridification on a firmer basis of understanding of the ocean driving of the atmosphere and its coupling to the land system. 
    more » « less
  5. The rainfall pattern seen in the Indian Cardamom Hills (ICH) has been extremely variable and complicated, with El Niño -Southern Oscillation (ENSO) playing a crucial role in shaping this pattern. In light of this, more investigation is required through improved statistical analysis. During the study period, there was greater variability in rainfall and the frequency of rainy days. About 2,730 mm of rainfall was reported in 2018, while the lowest amount (1168.3 mm) was registered for 2016. The largest decrease in decadal rainfall (>65 mm) was given by the decade 1960–1969, followed by 1980–1989 (>40 mm) and 2010–2019 (>10 mm). In the last 60 years of study, there has been a reduction of rainy days by 5 days in the last decade (2000–2009), but in the following decade (2010–2019), it registered an increasing trend, which is only slightly <2 days. The highest increase in decadal rainy days was observed for the 1970–1979 period. The smallest decadal increase was reported for the last decade (2010–2019). Total sunshine hours were the highest (1527.47) for the lowest rainfall year of 2016, while the lowest value (1,279) was recorded for the highest rainfall year (2021). The rainfall characteristics of ICH are highly influenced by the global ENSO phenomenon, both positively and negatively, depending on the global El Nino and La Nina conditions. Correspondingly, below and above-average rainfall was recorded consecutively for 1963–1973, 2003–2016, and 1970–2002. Higher bright forenoon sun hours occurred only during SWM months, which also reported maximum disease intensity on cardamom. The year 2016 was regarded as a poorly distributed year, with the lowest rainfall and the highest bright afternoon sun hours during the winter and summer months (January-May). Over the last three decades, the production and productivity of cardamom have shown a steady increase along with the ongoing local climatic change. Many of our statistical tests resulted in important information in support of temporal climatic change and variability. Maintaining shade levels is essential to address the adverse effects of increasing surface air temperature coupled with the downward trend of the number of rainy days and elevated soil temperature levels. 
    more » « less