skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quark-lepton mass relations from modular flavor symmetry
A<sc>bstract</sc> The so-called Golden Mass Relation provides a testable correlation between charged-lepton and down-type quark masses, that arises in certain flavor models that do not rely on Grand Unification. Such models typically involve broken family symmetries. In this work, we demonstrate that realistic fermion mass relations can emerge naturally in modular invariant models, without relying onad hocflavon alignments. We provide a model-independent derivation of a class of mass relations that are experimentally testable. These relations are determined by both the Clebsch-Gordan coefficients of the specific finite modular group and the expansion coefficients of its modular forms, thus offering potential probes of modular invariant models. As a detailed example, we present a set of viable mass relations based on the Γ4≅S4symmetry, which have calculable deviations from the usual Golden Mass Relation.  more » « less
Award ID(s):
2210283
PAR ID:
10520140
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We have investigated the modular binary octahedral group 2Oas a flavor symmetry to explain the structure of Standard Model. The vector-valued modular forms in all irreducible representations of this group are constructed. We have classified all possible fermion mass models based on the modular binary octahedral group 2O. A comprehensive numerical analysis is performed, and we present some benchmark quark/lepton mass models in good agreement with the experimental data. Notably we find a minimal modular invariant model for leptons and quarks, which is able to explain simultaneously the masses and mixing parameters of both quarks and leptons in terms of 14 real free parameters including the modulusτ. The fermion mass hierarchies around the vicinity of the modular fixed points are explored. 
    more » « less
  2. A<sc>bstract</sc> Inspired by the structure of top-down derived models endowed with modular flavor symmetries, we investigate the yet phenomenologically unexplored binary dihedral group 2D3. After building the vector-valued modular forms in the representations of 2D3with small modular weights, we systematically classify all (Dirac and Majorana) mass textures of fermions with fractional modular weights and all possible 2 + 1-family structures. This allows us to explore the parameter space of fermion models based on 2D3, aiming at a description of both quarks and leptons with a minimal number of parameters and best compatibility with observed data. We consider the separate possibilities of neutrino masses generated by either a type-I seesaw mechanism or the Weinberg operator. We identify a model that, besides fitting all known flavor observables, delivers predictions for six not-yet measured parameters and favors normal-ordered neutrino masses generated by the Weinberg operator. It would be interesting to figure out whether it is possible to embed our model within a top-down scheme, such as$${\mathbb{T}}^{2}/{\mathbb{Z}}_{4}$$heterotic orbifold compactifications. 
    more » « less
  3. Abstract We present measurements of black hole masses and Eddington ratios (λEdd) for a sample of 38 bright (M1450< −24.4 mag) quasars at 5.8 ≲z≲ 7.5, derived from Very Large Telescope/X–shooter near–IR spectroscopy of their broad Civand Mgiiemission lines. The black hole masses (on average,MBH∼ 4.6 × 109M) and accretion rates (0.1 ≲λEdd≲ 1.0) are broadly consistent with that of similarly luminous 0.3 ≲z≲ 2.3 quasars, but there is evidence for a mild increase in the Eddington ratio abovez≳ 6. Combined with deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII] 158μm line from the host galaxies and VLT/MUSE investigations of the extended Lyαhalos, this study provides fundamental clues to models of the formation and growth of the first massive galaxies and black holes. Compared to local scaling relations,z≳ 5.7 black holes appear to be over-massive relative to their hosts, with accretion properties that do not change with host galaxy morphologies. Assuming that the kinematics of theT∼ 104K gas, traced by the extended Lyαhalos, are dominated by the gravitational potential of the dark matter halo, we observe a similar relation between black hole mass and circular velocity as reported forz∼ 0 galaxies. These results paint a picture where the first supermassive black holes reside in massive halos atz≳ 6 and lead the first stages of galaxy formation by rapidly growing in mass with a duty cycle of order unity. The duty cycle needs to drastically drop toward lower redshifts, while the host galaxies continue forming stars at a rate of hundreds of solar masses per year, sustained by the large reservoirs of cool gas surrounding them. 
    more » « less
  4. A<sc>bstract</sc> We investigate a class of mass deformations that connect pairs of 2d(0,2) gauge theories associated to different toric Calabi-Yau 4-folds. These deformations are generalizations to 2dof the well-known Klebanov-Witten deformation relating the 4dgauge theories for the ℂ2/ℤ2× ℂ orbifold and the conifold. We investigate various aspects of these deformations, including their connection to brane brick models and the relation between the change in the geometry and the pattern of symmetry breaking triggered by the deformation. We also explore how the volume of the Sasaki-Einstein 7-manifold at the base of the Calabi-Yau 4-fold varies under deformation, which leads us to conjecture that it quantifies the number of degrees of freedom of the gauge theory and its dependence on the RG scale. 
    more » « less
  5. A<sc>bstract</sc> We analyze a general class of locally supersymmetric, CP and modular invariant models of lepton masses depending on two complex moduli taking values in the vicinity of a fixed point, where the theory enjoys a residual symmetry under a finite group. Like in models that depend on a single modulus, we find that all physical quantities exhibit a universal scaling with the distance from the fixed point. There is no dependence on the level of the construction, the weights of matter multiplets and their representations, with the only restriction that electroweak lepton doublets transform as irreducible triplets of the finite modular group. Also the form of the kinetic terms, which here are assumed to be neither minimal nor flavor blind, is irrelevant to the outcome. The result is remarkably simple and the whole class of examined theories gives rise to five independent patterns of neutrino mass matrices. Only in one of them, the predicted scaling agrees with the observed neutrino mass ratios and lepton mixing angles, exactly as in single modulus theories living close toτ=i. 
    more » « less