Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We study the evolution of isolated self-interacting dark matter (SIDM) halos that undergo gravothermal collapse and are driven deep into the short-mean-free-path regime.We assume spherical Navarro-Frenk-White (NFW) halos as initial conditions and allow for elastic dark matter self-interactions.We discuss the structure of the halo core deep in the core-collapsed regime and how it depends on the particle physics properties of dark matter, in particular, the velocity dependence of the self-interaction cross section. We find an approximate universality deep in this regime that allows us to connect the evolution in the short- and long-mean-free-path regimes, and approximately map the velocity-dependent self-interaction cross sections to constant ones for the full gravothermal evolution. We provide a semi-analytic prescription based on our numerical results for halo evolution deep in the core-collapsed regime.Our results are essential for estimating the masses of the black holes that are likely to be left in the core of SIDM halos.more » « less
-
Abstract Q-balls are non-topological solitons arising in scalar field theories. Solutions for rotating Q-balls (and the related boson stars) have been shown to exist when the angular momentum is equal to an integer multiple of the Q-ball chargeQ. Here we consider the possibility of classically long-lived metastable rotating Q-balls with small angular momentum, even for large charge, for all scalar theories that support non-rotating Q-balls. This is relevant for rotating extensions of Q-balls and related solitons such as boson stars as it impacts their cosmological phenomenology. arXiv:2302.11589more » « less
-
A<sc>bstract</sc> Searches for new physics in the top quark sector are of great theoretical interest, yet some powerful avenues for discovery remain unexplored. We characterize the expected statistical power of the LHC dataset to constrain the single production of heavy top partnersTdecaying to a top quark and a photon or a top quark and a gluon. We describe an effective interaction which could generate such production, though the limits apply to a range of theoretical models. We find sensitivity to cross sections in the 102− 105fb range, forTmasses between 300 and 1000 GeV, depending on decay mode.more » « less
-
A<sc>bstract</sc> We analyze a general class of locally supersymmetric, CP and modular invariant models of lepton masses depending on two complex moduli taking values in the vicinity of a fixed point, where the theory enjoys a residual symmetry under a finite group. Like in models that depend on a single modulus, we find that all physical quantities exhibit a universal scaling with the distance from the fixed point. There is no dependence on the level of the construction, the weights of matter multiplets and their representations, with the only restriction that electroweak lepton doublets transform as irreducible triplets of the finite modular group. Also the form of the kinetic terms, which here are assumed to be neither minimal nor flavor blind, is irrelevant to the outcome. The result is remarkably simple and the whole class of examined theories gives rise to five independent patterns of neutrino mass matrices. Only in one of them, the predicted scaling agrees with the observed neutrino mass ratios and lepton mixing angles, exactly as in single modulus theories living close toτ=i.more » « less
-
A<sc>bstract</sc> Inspired by the structure of top-down derived models endowed with modular flavor symmetries, we investigate the yet phenomenologically unexplored binary dihedral group 2D3. After building the vector-valued modular forms in the representations of 2D3with small modular weights, we systematically classify all (Dirac and Majorana) mass textures of fermions with fractional modular weights and all possible 2 + 1-family structures. This allows us to explore the parameter space of fermion models based on 2D3, aiming at a description of both quarks and leptons with a minimal number of parameters and best compatibility with observed data. We consider the separate possibilities of neutrino masses generated by either a type-I seesaw mechanism or the Weinberg operator. We identify a model that, besides fitting all known flavor observables, delivers predictions for six not-yet measured parameters and favors normal-ordered neutrino masses generated by the Weinberg operator. It would be interesting to figure out whether it is possible to embed our model within a top-down scheme, such as$${\mathbb{T}}^{2}/{\mathbb{Z}}_{4}$$heterotic orbifold compactifications.more » « less
-
A<sc>bstract</sc> Quirks are generic predictions of strongly-coupled dark sectors. For weak-scale masses and a broad range of confining scales in the dark sector, quirks can be discovered only at the energy frontier, but quirk-anti-quirk pairs are produced with unusual signatures at lowpT, making them difficult to detect at the large LHC detectors. We determine the prospects for discovering quirks using timing information at FASER, FASER2, and an “ultimate detector” in the far-forward region at the LHC. NLO QCD corrections are incorporated in the simulation of quirk production, which can significantly increase the production rate. To accurately propagate quirk pairs from the ATLAS interaction point to the forward detectors, the ionization energy loss of charged quirks traveling through matter, the radiation of infracolor glueballs and QCD hadrons during quirk pair oscillations, and the annihilation of quirkonium are properly considered. The quirk signal is separated from the large muon background using timing information from scintillator detectors by requiring either two coincident delayed tracks, based on arrival times at the detector, or two coincident slow tracks, based on time differences between hits in the front and back scintillators. We find that simple cuts preserve much of the signal, but reduce the muon background to negligible levels. With the data already collected, FASER can discover quirks in currently unconstrained parameter space. FASER2, running at the Forward Physics Facility during the HL-LHC era, will greatly extend this reach, probing the TeV-scale quirk masses motivated by the gauge hierarchy problem for the broad range of dark-sector confining scales between 100 eV and 100 keV.more » « less
-
A<sc>bstract</sc> The so-called Golden Mass Relation provides a testable correlation between charged-lepton and down-type quark masses, that arises in certain flavor models that do not rely on Grand Unification. Such models typically involve broken family symmetries. In this work, we demonstrate that realistic fermion mass relations can emerge naturally in modular invariant models, without relying onad hocflavon alignments. We provide a model-independent derivation of a class of mass relations that are experimentally testable. These relations are determined by both the Clebsch-Gordan coefficients of the specific finite modular group and the expansion coefficients of its modular forms, thus offering potential probes of modular invariant models. As a detailed example, we present a set of viable mass relations based on the Γ4≅S4symmetry, which have calculable deviations from the usual Golden Mass Relation.more » « less
-
Abstract In this work we present : A package dedicated to efficient computations of observables in the Early Universe with the focus on the cosmological era of Big Bang Nucleosynthesis (BBN). The code offers fast and precise evaluation of BBN light-element abundances together with the effective number of relativistic degrees of freedom, including non-instantaneous decoupling effects. is suitable for state-of-the-art analyses in the Standard Model as well as for general investigations into New Physics active during BBN. After reviewing the physics implemented in , we provide a short guide on how to use the code for applications in the Standard Model and beyond. The package is written in Python, but more advanced users can optionally take advantage of the open-source community for Julia. is publicly available on GitHub.more » « less
-
ABSTRACT The gamma-ray Fermi-LAT Galactic Centre excess (GCE) has puzzled scientists for over 15 yr. Despite ongoing debates about its properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the Galactic bulge dominate the excess emission. Recent claims favouring a DM-motivated template for the GCE are shown to rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea survey results in a significantly better fit for the GCE than DM-motivated templates. This result is independent of whether a galprop-based model or a more non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when additional freedom is added in the background models, allowing for non-parametric modulation of the model components and substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane.more » « less
-
A<sc>bstract</sc> We have investigated the modular binary octahedral group 2Oas a flavor symmetry to explain the structure of Standard Model. The vector-valued modular forms in all irreducible representations of this group are constructed. We have classified all possible fermion mass models based on the modular binary octahedral group 2O. A comprehensive numerical analysis is performed, and we present some benchmark quark/lepton mass models in good agreement with the experimental data. Notably we find a minimal modular invariant model for leptons and quarks, which is able to explain simultaneously the masses and mixing parameters of both quarks and leptons in terms of 14 real free parameters including the modulusτ. The fermion mass hierarchies around the vicinity of the modular fixed points are explored.more » « less