Abstract Flow modifications induced by wind turbine rotors on the incoming atmospheric boundary layer (ABL), such as blockage and speedups, can be important factors affecting the power performance and annual energy production (AEP) of a wind farm. Further, these rotor‐induced effects on the incoming ABL can vary significantly with the characteristics of the incoming wind, such as wind shear, veer, and turbulence intensity, and turbine operative conditions. To better characterize the complex flow physics underpinning the interaction between turbine rotors and the ABL, a field campaign was performed by deploying profiling wind LiDARs both before and after the construction of an onshore wind turbine array. Considering that the magnitude of these rotor‐induced flow modifications represents a small percentage of the incoming wind speed ( ), high accuracy needs to be achieved for the analysis of the experimental data and generation of flow predictions. Further, flow distortions induced by the site topography and effects of the local climatology need to be quantified and differentiated from those induced by wind turbine rotors. To this aim, a suite of statistical and machine learning models, such as k‐means cluster analysis coupled with random forest predictions, are used to quantify and predict flow modifications for different wind and atmospheric conditions. The experimental results show that wind velocity reductions of up to 3% can be observed at an upstream distance of 1.5 rotor diameter from the leading wind turbine rotor, with more significant effects occurring for larger positive wind shear. For more complex wind conditions, such as negative shear and low‐level jet, the rotor induction becomes highly complex entailing either velocity reductions (down to 9%) below hub height and velocity increases (up to 3%) above hub height. The effects of the rotor induction on the incoming wind velocity field seem to be already roughly negligible at an upstream distance of three rotor diameters. The results from this field experiment will inform models to simulate wind‐turbine and wind‐farm operations with improved accuracy for flow predictions in the proximity of the rotor area, which will be instrumental for more accurate quantification of wind farm blockage and relative effects on AEP.
more »
« less
Modeling the effect of wind speed and direction shear on utility‐scale wind turbine power production
Wind speed and direction variations across the rotor affect power production. As utility‐scale turbines extend higher into the atmospheric boundary layer (ABL) with larger rotor diameters and hub heights, they increasingly encounter more complex wind speed and direction variations. We assess three models for power production that account for wind speed and direction shear. Two are based on actuator disc representations, and the third is a blade element representation. We also evaluate the predictions from a standard power curve model that has no knowledge of wind shear. The predictions from each model, driven by wind profile measurements from a profiling LiDAR, are compared to concurrent power measurements from an adjacent utility‐scale wind turbine. In the field measurements of the utility‐scale turbine, discrete combinations of speed and direction shear induce changes in power production of −19% to +34% relative to the turbine power curve for a given hub height wind speed. Positive speed shear generally corresponds to over‐performance and increasing magnitudes of direction shear to greater under‐performance, relative to the power curve. Overall, the blade element model produces both higher correlation and lower error relative to the other models, but its quantitative accuracy depends on induction and controller sub‐models. To further assess the influence of complex, non‐monotonic wind profiles, we also drive the models with best‐fit power law wind speed profiles and linear wind direction profiles. These idealized inputs produce qualitative and quantitative differences in power predictions from each model, demonstrating that time‐varying, non‐monotonic wind shear affects wind power production.
more »
« less
- Award ID(s):
- 2226053
- PAR ID:
- 10520198
- Publisher / Repository:
- John Wiley & Sons Ltd
- Date Published:
- Journal Name:
- Wind Energy
- ISSN:
- 1095-4244
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As turbines continue to grow in hub height and rotor diameter and wind farms grow larger, consideration of stratified atmospheric boundary layer (ABL) processes in wind power models becomes increasingly important. Atmospheric stratification can considerably alter the boundary layer structure and flow characteristics through buoyant forcing. Variations in buoyancy, and corresponding ABL stability, in both space and time impact ABL wind speed shear, wind direction shear, boundary layer height, turbulence kinetic energy, and turbulence intensity. In addition, the presence of stratification will result in a direct buoyant forcing within the wake region. These ABL mechanisms affect turbine power production, the momentum and kinetic energy deficit wakes generated by turbines, and the turbulent mixing and kinetic energy entrainment in wind farms. Presently, state-of-practice engineering models of mean wake momentum utilize highly empirical turbulence models that do not explicitly account for ABL stability. Models also often neglect the interaction between the wake momentum deficit and the turbulence kinetic energy added by the wake, which depends on stratification. In this work, we develop a turbulence model that models the wake-added turbulence kinetic energy, and we couple it with a wake model based on the parabolized Reynolds-averaged Navier–Stokes equations. Comparing the model predictions to large eddy simulations across stabilities (Obukhov lengths) and surface roughness lengths, we find lower prediction error in both power production and the wake velocity field across the ABL conditions and error metrics investigated.more » « less
-
null (Ed.)Abstract. Engineering wake models provide the invaluable advantage to predict wind turbine wakes, power capture, and, in turn, annual energy production for an entire wind farm with very low computational costs compared to higher-fidelity numerical tools. However, wake and power predictions obtained with engineering wake models can be insufficiently accurate for wind farm optimization problems due to the ad hoc tuning of the model parameters, which are typically strongly dependent on the characteristics of the site and power plant under investigation. In this paper, lidar measurements collected for individual turbine wakes evolving over a flat terrain are leveraged to perform optimal tuning of the parameters of four widely used engineering wake models. The average wake velocity fields, used as a reference for the optimization problem, are obtained through a cluster analysis of lidar measurements performed under a broad range of turbine operative conditions, namely rotor thrust coefficients, and incoming wind characteristics, namely turbulence intensity at hub height. The sensitivity analysis of the optimally tuned model parameters and the respective physical interpretation are presented. The performance of the optimally tuned engineering wake models is discussed, while the results suggest that the optimally tuned Bastankhah and Ainslie wake models provide very good predictions of wind turbine wakes. Specifically, the Bastankhah wake model should be tuned only for the far-wake region, namely where the wake velocity field can be well approximated with a Gaussian profile in the radial direction. In contrast, the Ainslie model provides the advantage of using as input an arbitrary near-wake velocity profile, which can be obtained through other wake models, higher-fidelity tools, or experimental data. The good prediction capabilities of the Ainslie model indicate that the mixing-length model is a simple yet efficient turbulence closure to capture effects of incoming wind and wake-generated turbulence on the wake downstream evolution and predictions of turbine power yield.more » « less
-
Abstract A field experiment was conducted to investigate the effects of the thrust force induced by utility-scale wind turbines on the incoming wind field. Five wind profiling LiDARs and a scanning Doppler pulsed wind LiDAR were deployed in the proximity of a row of four wind turbines located over relatively flat terrain, both before and after the construction of the wind farm. The analysis of the LiDAR data collected during the pre-construction phase enables quantifying the wind map of the site, which is then leveraged to correct the post-construction LiDAR data and isolate rotor-induced effects on the incoming wind field. The analysis of the profiling LiDAR data allows for the identification of the induction zone upstream of the turbine rotors, with an increasing velocity deficit moving from the top tip towards the bottom tip of the rotor. The largest wind speed reduction (about 5%) is observed for convective conditions and incoming hub-height wind speed between cut-in and rated wind speeds. The scanning LiDAR data indicate the presence of speedup regions within the gaps between adjacent turbine rotors. Speedup increases with reducing the transverse distance between the rotors, atmospheric instability (maximum 15%), while a longer streamwise extent of the speedup region is observed under stable atmospheric conditions.more » « less
-
Abstract Wind turbine reliability monitoring and prediction are crucial for early failure detection, proactive maintenance, performance optimization, and cost reduction, especially as many utility-scale turbines near the midpoint or end of their operational lifespan. We proposed a wind turbine subsystem reliability prediction model to facilitate week-ahead forecasts of the occurrence, duration, and type of potential failures or probability of downtime for major turbine components, including the blade, hub, gearbox, generator, inverter, electrical, and control subsystems. Specifically, we developed an Instance-Normalization Decomposition Linear (IN-DLinear) model, grounded in deep time-series modelling theory. The distribution shifts in turbine state features across the training, validation, and test datasets, as well as across various time scales, were effectively mitigated with IN. The long-term inertia in turbine state features was addressed by decomposing the input time-series data to effectively capture seasonality. The efficacy of IN-DLinear is systematically evaluated using 10-year field measurements from a 2.5-MW wind turbine. IN-DLinear exhibited superior performance, reducing prediction errors by 13%∼30% compared to mean value judgment and other deep time-series models, including Seq2Seq, Transformer, and Autoformer.more » « less
An official website of the United States government

