Abstract Let 𝜋 and \pi^{\prime}be cuspidal automorphic representations of \mathrm{GL}(n)and \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of \mathrm{GL}(2). 
                        more » 
                        « less   
                    
                            
                            Skein lasagna modules for 2-handlebodies
                        
                    
    
            Abstract Morrison, Walker, and Wedrich used the blob complex to construct a generalization of Khovanov–Rozansky homology to links in the boundary of a 4-manifold. The degree zero part of their theory, called the skein lasagna module, admits an elementary definition in terms of certain diagrams in the 4-manifold. We give a description of the skein lasagna module for 4-manifolds without 1- and 3-handles, and present some explicit calculations for disk bundles over {S^{2}}. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2003488
- PAR ID:
- 10520306
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Journal für die reine und angewandte Mathematik (Crelles Journal)
- Volume:
- 2022
- Issue:
- 788
- ISSN:
- 0075-4102
- Page Range / eLocation ID:
- 37 to 76
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We study the family of irreducible modules for quantum affine {\mathfrak{sl}_{n+1}}whose Drinfeld polynomials are supported on just one node of the Dynkin diagram. We identify all the prime modules in this family and prove a unique factorization theorem. The Drinfeld polynomials of the prime modules encode information coming from the points of reducibility of tensor products of the fundamental modules associated to {A_{m}}with {m\leq n}. These prime modules are a special class of the snake modules studied by Mukhin and Young. We relate our modules to the work of Hernandez and Leclerc and define generalizations of the category {\mathscr{C}^{-}}. This leads naturally to the notion of an inflation of the corresponding Grothendieck ring. In the last section we show that the tensor product of a (higher order) Kirillov–Reshetikhin module with its dual always contains an imaginary module in its Jordan–Hölder series and give an explicit formula for its Drinfeld polynomial. Together with the results of [D. Hernandez and B. Leclerc,A cluster algebra approach toq-characters of Kirillov–Reshetikhin modules,J. Eur. Math. Soc. (JEMS) 18 2016, 5, 1113–1159] this gives examples of a product of cluster variables which are not in the span of cluster monomials. We also discuss the connection of our work with the examples arising from the work of [E. Lapid and A. Mínguez,Geometric conditions for \square-irreducibility of certain representations of the general linear group over a non-archimedean local field,Adv. Math. 339 2018, 113–190]. Finally, we use our methods to give a family of imaginary modules in type {D_{4}}which do not arise from an embedding of {A_{r}}with {r\leq 3}in {D_{4}}.more » « less
- 
            Abstract We show that there exists a quantity, depending only on C^{0}data of a Riemannian metric, that agrees with the usual ADM mass at infinity whenever the ADM mass exists, but has a well-defined limit at infinity for any continuous Riemannian metric that is asymptotically flat in the C^{0}sense and has nonnegative scalar curvature in the sense of Ricci flow.Moreover, the C^{0}mass at infinity is independent of choice of C^{0}-asymptotically flat coordinate chart, and the C^{0}local mass has controlled distortion under Ricci–DeTurck flow when coupled with a suitably evolving test function.more » « less
- 
            Abstract Assuming the Riemann Hypothesis, we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in {\zeta(s)}. For example, integrating {|\zeta(\frac{1}{2}+\alpha+it)|^{-2k}}with respect totfromTto {2T}, we obtain an asymptotic formula when the shift α is roughly bigger than {\frac{1}{\log T}}and {k<\frac{1}{2}}. We also obtain non-trivial upper bounds for much smaller shifts, as long as {\log\frac{1}{\alpha}\ll\log\log T}. This provides partial progress towards a conjecture of Gonek on negative moments of the Riemann zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an upper bound for the average of the generalized Möbius function.more » « less
- 
            Abstract For every d\geq 3, we construct a noncompact smooth 𝑑-dimensional Riemannian manifold with strictly positive sectional curvature without isoperimetric sets for any volume below 1.We construct a similar example also for the relative isoperimetric problem in (unbounded) convex sets in \mathbb{R}^{d}.The examples we construct have nondegenerate asymptotic cone.The dimensional constraint d\geq 3is sharp.Our examples exhibit nonexistence of isoperimetric sets only for small volumes; indeed, in nonnegatively curved spaces with nondegenerate asymptotic cones, isoperimetric sets with large volumes always exist.This is the first instance of noncollapsed nonnegatively curved space without isoperimetric sets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    