Flowering phenology can vary considerably even at fine spatial scales, potentially leading to temporal reproductive isolation among habitat patches. Climate change could alter flowering synchrony, and hence temporal isolation, if plants in different microhabitats vary in their phenological response to climate change. Despite the importance of temporal isolation in determining patterns of gene flow, and hence population genetic structure and local adaptation, little is known about how changes in climate affect temporal isolation within populations. Here, we use flowering phenology and floral abundance data of 50 subalpine plant species over 44 years to test whether temporal isolation between habitat patches is affected by spring temperature. For each species and year, we analysed temporal separation in peak flowering and flowering overlap between habitat patches separated by 5–950 m. Across our study species, warmer springs were associated with more temporal differentiation in flowering peaks among habitat patches, and less flowering overlap, increasing potential for temporal isolation within populations.
Climate and land use change are two of the primary threats to global biodiversity; however, each species within a community may respond differently to these facets of global change. Although it is typically assumed that species use the habitat that is advantageous for survival and reproduction, anthropogenic changes to the environment can create ecological traps, making it critical to assess both habitat selection (e.g. where species congregate on the landscape) and the influence of selected habitats on the demographic processes that govern population dynamics. We used a long‐term (1958–2011), large‐scale, multi‐species dataset for waterfowl that spans the United States and Canada to estimate species‐specific responses to climate and land use variables in a landscape that has undergone significant environmental change across space and time. We first estimated the effects of change in climate and land use variables on habitat selection and population dynamics for nine species. We then hypothesized that species‐specific responses to environmental change would scale with life‐history traits, specifically: longevity, nesting phenology and female breeding site fidelity. We observed species‐level heterogeneity in the demographic and habitat selection responses to climate and land use change, which would complicate community‐level habitat management. Our work highlights the importance of multi‐species monitoring and community‐level analysis, even among closely related species. We detected several relationships between life‐history traits, particularly nesting phenology, and species' responses to environmental change. One species, the early‐nesting northern pintail ( By distilling the diversity of species' responses to environmental change within a community, our methodological approach and findings will help improve predictions of community responses to global change and can inform multi‐species management and conservation plans in dynamic landscapes that are based on simple tenets of life‐history theory.
- Award ID(s):
- 2209765
- PAR ID:
- 10520332
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 92
- Issue:
- 6
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- 1267 to 1284
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis . By reducing opportunities for mating among plants in nearby habitat patches, our results suggest that warmer springs may reduce opportunities for gene flow within populations, and, consequently, the capacity of plant populations to adapt to environmental changes. -
Summary Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.
Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.
When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.
Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales.
-
Abstract Matching the timing of life‐history transitions with ecosystem phenology is critical for the survival of many species, especially those undertaking long‐distance migrations. As a result, whether and how migratory populations adjust timing of life‐history transitions in response to environmental variability are important questions in ecology and conservation. Yet the flexibility and drivers of life‐history transitions remain largely untested for migratory marine populations, which contend with the unique spatiotemporal dynamics and sensory conditions found in marine ecosystems.
Here, using an acoustic signature of blue whales’ regional population‐level transition from foraging to breeding migration, we document significant interannual flexibility in the timing of this life‐history transition (spanning roughly 4 months) over a continuous 6‐year study period.
We further show that variability in the timing of this transition follows the oceanographic phenology of blue whales’ foraging habitat, with a later transition from foraging to breeding migration occurring in years with an earlier onset, later peak and greater accumulation of biological productivity.
These findings indicate that blue whales delay the transition from foraging to southward migration in years of the highest and most persistent biological productivity, consistent with the hypothesis that this population maximizes energy intake on foraging grounds rather than departing towards breeding grounds as soon as sufficient energy reserves are accumulated.
The use of flexible cues (e.g. foraging conditions and long‐distance acoustic signals) in timing a major life‐history transition may be key to the persistence of this endangered population facing the pressures of rapid environmental change. Furthermore, these results extend theoretical understanding of the flexibility and drivers of population‐level migration to a relatively solitary marine migrant.
Read the free
Plain Language Summary for this article on the Journal blog. -
Abstract Across taxa, the timing of life‐history events (phenology) is changing in response to warming temperatures. However, little is known about drivers of variation in phenological trends among species.
We analysed 168 years of museum specimen and sighting data to evaluate the patterns of phenological change in 70 species of solitary bees that varied in three ecological traits: diet breadth (generalist or specialist), seasonality (spring, summer or fall) and nesting location (above‐ground or below‐ground). We estimated changes in onset, median, end and duration of each bee species' annual activity (flight duration) using quantile regression.
To determine whether ecological traits could explain phenological trends, we compared average trends across species groups that differed in a single trait. We expected that specialist bees would be constrained by their host plants' phenology and would show weaker phenological change than generalist species. We expected phenological advances in spring and delays in summer and fall. Lastly, we expected stronger shifts in above‐ground versus below‐ground nesters.
Across all species, solitary bees have advanced their phenology by 0.43 days/decade. Since 1970, this advancement has increased fourfold to 1.62 days/decade. Solitary bees have also lengthened their flight period by 0.44 days/decade. Seasonality and nesting location explained variation in trends among species. Spring‐ and summer‐active bees tended to advance their phenology, whereas fall‐active bees tended to delay. Above‐ground nesting species experienced stronger advances than below‐ground nesting bees in spring; however, the opposite was true in summer. Diet breadth was not associated with patterns of phenological change.
Our study has two key implications. First, an increasing activity period of bees across the flight season means that bee communities will potentially provide pollination services for a longer period of time during the year. And, since phenological trends in solitary bees can be explained by some ecological traits, our study provides insight into mechanisms underpinning population viability of insect pollinators in a changing world.
-
Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.
We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.
To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (
Afrixalus fornasini, A. delicatus andA. sylvaticus ) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escalerai andM. crypticus ).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.