skip to main content


This content will become publicly available on February 1, 2025

Title: Artificial Space Weathering to Mimic Solar Wind Enhances the Toxicity of Lunar Dust Simulants in Human Lung Cells
Abstract

During NASA's Apollo missions, inhalation of dust particles from lunar regolith was identified as a potential occupational hazard for astronauts. These fine particles adhered tightly to spacesuits and were unavoidably brought into the living areas of the spacecraft. Apollo astronauts reported that exposure to the dust caused intense respiratory and ocular irritation. This problem is a potential challenge for the Artemis Program, which aims to return humans to the Moon for extended stays in this decade. Since lunar dust is “weathered” by space radiation, solar wind, and the incessant bombardment of micrometeorites, we investigated whether treatment of lunar regolith simulants to mimic space weathering enhanced their toxicity. Two such simulants were employed in this research, Lunar Mare Simulant‐1 (LMS‐1), and Lunar Highlands Simulant‐1 (LHS‐1), which were added to cultures of human lung epithelial cells (A549) to simulate lung exposure to the dusts. In addition to pulverization, previously shown to increase dust toxicity sharply, the simulants were exposed to hydrogen gas at high temperature as a proxy for solar wind exposure. This treatment further increased the toxicity of both simulants, as measured by the disruption of mitochondrial function, and damage to DNA both in mitochondria and in the nucleus. By testing the effects of supplementing the cells with an antioxidant (N‐acetylcysteine), we showed that a substantial component of this toxicity arises from free radicals. It remains to be determined to what extent the radicals arise from the dust itself, as opposed to their active generation by inflammatory processes in the treated cells.

 
more » « less
Award ID(s):
2105876
NSF-PAR ID:
10520480
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
GeoHealth
Volume:
8
Issue:
2
ISSN:
2471-1403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Crewed missions to the Moon may resume as early as 2026 with NASA's Artemis III mission, and lunar dust exposure/inhalation is a potentially serious health hazard that requires detailed study. Current dust exposure limits are based on Apollo‐era samples that spent decades in long‐term storage on Earth; their diminished reactivity may lead to underestimation of potential harm that could be caused by lunar dust exposure. In particular, lunar dust contains nanophase metallic iron grains, produced by “space weathering”; the reactivity of this unique component of lunar dust is not well understood. Herein, we employ a chemical reduction technique that exposes lunar simulants to heat and hydrogen gas to produce metallic iron particles on grain surfaces. We assess the capacity of these reduced lunar simulants to generate hydroxyl radical (OH*) when immersed in deionized (DI) water, simulated lung fluid (SLF), and artificial lysosomal fluid (ALF). Lunar simulant reduction produces surface‐adhered metallic iron “blebs” that resemble nanophase metallic iron particles found in lunar dust grains. Reduced samples generate ~5–100× greater concentrations of the oxidative OH* in DI water versus non‐reduced simulants, which we attribute to metallic iron. SLF and ALF appear to reduce measured OH*. The increase in observed OH* generation for reduced simulants implies high oxidative damage upon exposure to lunar dust. Low levels of OH* measured in SLF and ALF imply potential damage to proteins or quenching of OH* generation, respectively. Reduction of lunar dust simulants provides a quick cost‐effective approach to study dusty materials analogous to authentic lunar dust.

     
    more » « less
  2. Abstract

    Millimeter‐to‐nanometer‐sized iron‐ and nickel‐rich metals are ubiquitous on the lunar surface. The proposed origin of these metals falls into two broad classes which should have distinct geochemical signatures—(1) the reduction of iron‐bearing minerals or (2) the addition of metals from meteoritic sources. The metals measured here from the Apollo 16 regolith possess low Ni (2–6 wt%) and elevated Ge (80–350 ppm) suggesting a meteoritic origin. However, the measured Ni is lower, and the Ge higher than currently known iron meteorites. In comparison to the low Ni iron meteorites, the even lower Ni and higher Ge contents exhibited by these lunar metals are best explained by impact‐driven volatilization and condensation of Ni‐poor meteoritic metal during their impact and addition to the lunar surface. The presence of similar, low Ni‐bearing metals in Apollo return samples from geographically distant sites suggests that this geochemical signature might not be restricted to just the Apollo 16 locality and that volatility‐driven modification of meteoritic metals are a common feature of lunar regolith formation. The possibility of a significant low Ni/high Ge meteoritic component in the lunar regolith, and the observation of chemical fractionation during emplacement, has implications for the interpretation of both lunar remote‐sensing data and bulk geochemical data derived from sample return material. Additionally, our observation of predominantly meteoritic sourced metals has implications for the prevalence of meteoritic addition on airless planetary bodies.

     
    more » « less
  3. Apollo 11 was the first manned space mission to successfully bring astronauts to the Moon and return them safely. As part of NASA’s goal in assessing team and mission success, all voice communications within mission control, astronauts, and support staff were captured using a multichannel analog system, which until recently had never been made available. More than 400 personnel served as mission specialists/support who communicated across 30 audio loops, resulting in 9,000+ h of data. It is essential to identify each speaker’s role during Apollo and analyze group communication to achieve a common goal. Manual annotation is costly, so this makes it necessary to determine robust speaker identification and tracking methods. In this study, a subset of 100hr derived from the collective 9,000hr of the Fearless Steps (FSteps) Apollo 11 audio data were investigated, corresponding to three critical mission phases: liftoff, lunar landing, and lunar walk. A speaker recognition assessment is performed on 140 speakers from a collective set of 183 NASA mission specialists who participated, based on sufficient training data obtained from 5 (out of 30) mission channels. We observe that SincNet performs the best in terms of accuracy and F score achieving 78.6% accuracy. Speaker models trained on specific phases are also compared with each other to determine if stress, g-force/atmospheric pressure, acoustic environments, etc., impact the robustness of the models. Higher performance was obtained using i-vector and x-vector systems for phases with limited data, such as liftoff and lunar walk. When provided with a sufficient amount of data (lunar landing phase), SincNet was shown to perform the best. This represents one of the first investigations on speaker recognition for massively large team-based communications involving naturalistic communication data. In addition, we use the concept of “Where’s Waldo?” to identify key speakers of interest (SOIs) and track them over the complete FSteps audio corpus. This additional task provides an opportunity for the research community to transition the FSteps collection as an educational resource while also serving as a tribute to the “heroes behind the heroes of Apollo.” 
    more » « less
  4. Abstract

    Lunar impact glasses, formed during impact events when the regolith is quenched during the ejecta's ballistic flight, are small samples whose information can lead to important advances in studies of the Moon. For example, they provide evidence that constrains both the compositional evolution of the lunar crust and the timing of the lunar impact flux starting at ~4,000 million years ago. They are abundant in the lunar regolith and retain geochemical information that tells us where and when they formed. Thus, they provide important details about areas of the Moon both sampled and not sampled by Apollo or Luna missions or lunar meteorites. Additionally, as a result of these glasses possessing a chemical memory of formation location and age, studies of lunar impact glasses provide a foundation on which to conduct studies of impact glasses from other planetary bodies. A summary of past and current lunar impact glass investigations, using glasses from the Apollo 11, 12, 14, 15, 16, and 17 regoliths, along with plans for future work, will be presented.

     
    more » « less
  5. Determining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon’s interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million–year–old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.9, 3.6, 3.3, and 3.2 billion years ago are capable of recording strong core dynamo–like fields but do not. Together, these data indicate that the Moon did not have a long-lived core dynamo. As a result, the Moon was not sheltered by a sustained paleomagnetosphere, and the lunar regolith should hold buried 3 He, water, and other volatile resources acquired from solar winds and Earth’s magnetosphere over some 4 billion years. 
    more » « less