Abstract During NASA's Apollo missions, inhalation of dust particles from lunar regolith was identified as a potential occupational hazard for astronauts. These fine particles adhered tightly to spacesuits and were unavoidably brought into the living areas of the spacecraft. Apollo astronauts reported that exposure to the dust caused intense respiratory and ocular irritation. This problem is a potential challenge for the Artemis Program, which aims to return humans to the Moon for extended stays in this decade. Since lunar dust is “weathered” by space radiation, solar wind, and the incessant bombardment of micrometeorites, we investigated whether treatment of lunar regolith simulants to mimic space weathering enhanced their toxicity. Two such simulants were employed in this research, Lunar Mare Simulant‐1 (LMS‐1), and Lunar Highlands Simulant‐1 (LHS‐1), which were added to cultures of human lung epithelial cells (A549) to simulate lung exposure to the dusts. In addition to pulverization, previously shown to increase dust toxicity sharply, the simulants were exposed to hydrogen gas at high temperature as a proxy for solar wind exposure. This treatment further increased the toxicity of both simulants, as measured by the disruption of mitochondrial function, and damage to DNA both in mitochondria and in the nucleus. By testing the effects of supplementing the cells with an antioxidant (N‐acetylcysteine), we showed that a substantial component of this toxicity arises from free radicals. It remains to be determined to what extent the radicals arise from the dust itself, as opposed to their active generation by inflammatory processes in the treated cells.
more »
« less
The reactivity of experimentally reduced lunar regolith simulants: Health implications for future crewed missions to the lunar surface
Abstract Crewed missions to the Moon may resume as early as 2026 with NASA's Artemis III mission, and lunar dust exposure/inhalation is a potentially serious health hazard that requires detailed study. Current dust exposure limits are based on Apollo‐era samples that spent decades in long‐term storage on Earth; their diminished reactivity may lead to underestimation of potential harm that could be caused by lunar dust exposure. In particular, lunar dust contains nanophase metallic iron grains, produced by “space weathering”; the reactivity of this unique component of lunar dust is not well understood. Herein, we employ a chemical reduction technique that exposes lunar simulants to heat and hydrogen gas to produce metallic iron particles on grain surfaces. We assess the capacity of these reduced lunar simulants to generate hydroxyl radical (OH*) when immersed in deionized (DI) water, simulated lung fluid (SLF), and artificial lysosomal fluid (ALF). Lunar simulant reduction produces surface‐adhered metallic iron “blebs” that resemble nanophase metallic iron particles found in lunar dust grains. Reduced samples generate ~5–100× greater concentrations of the oxidative OH* in DI water versus non‐reduced simulants, which we attribute to metallic iron. SLF and ALF appear to reduce measured OH*. The increase in observed OH* generation for reduced simulants implies high oxidative damage upon exposure to lunar dust. Low levels of OH* measured in SLF and ALF imply potential damage to proteins or quenching of OH* generation, respectively. Reduction of lunar dust simulants provides a quick cost‐effective approach to study dusty materials analogous to authentic lunar dust.
more »
« less
- Award ID(s):
- 2105876
- PAR ID:
- 10520479
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Meteoritics & Planetary Science
- ISSN:
- 1086-9379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Extremely elongated, conducting dust particles (also known as metallic ‘needles’ or ‘whiskers’) are seen in carbonaceous chondrites and in samples brought back from the Itokawa asteroid. Their formation in protostellar nebulae and subsequent injection into the interstellar medium have been demonstrated, both experimentally and theoretically. Metallic needles have been suggested to explain a wide variety of astrophysical phenomena, ranging from the mid-infrared interstellar extinction at $$\sim \,$$3–8$$\, {\rm \mu m}$$ to the thermalization of starlight to generate the cosmic microwave background. To validate (or invalidate) these suggestions, an accurate knowledge of the optics (e.g. the amplitude and the wavelength dependence of the absorption cross sections) of metallic needles is crucial. Here we calculate the absorption cross sections of iron needles of various aspect ratios over a wide wavelength range, by exploiting the discrete dipole approximation, the most powerful technique for rigorously calculating the optics of irregular or nonspherical grains. Our calculations support the earlier findings that the antenna theory and the Rayleigh approximation, which are often taken to approximate the optical properties of metallic needles, are indeed inapplicable.more » « less
-
Abstract The Moon generated a long‐lived core dynamo magnetic field, with intensities at least episodically reaching ∼10–100 μT during the period prior to ∼3.56 Ga. While magnetic anomalies observed within impact basins are likely attributable to the presence of impactor‐added metal, other anomalies such as those associated with lunar swirls are not as conclusively linked to exogenic materials. This has led to the hypothesis that some anomalies may be related to magmatic features such as dikes, sills, and laccoliths. However, basalts returned from the Apollo missions are magnetized too weakly to produce the required magnetization intensities (>0.5 A/m). Here, we test the hypothesis that subsolidus reduction of ilmenite within or adjacent to slowly cooled mafic intrusive bodies could locally enhance metallic FeNi contents within the lunar crust. We find that reduction within hypabyssal dikes with high‐Ti or low‐Ti mare basalt compositions can produce sufficient FeNi grains to carry the minimum >0.5 A/m magnetization intensity inferred for swirls, especially if ambient fields are >10 μT or if fine‐grained Fe‐Ni metals in the pseudo‐single domain grain size range are formed. Therefore, there exists a possibility that certain magnetic anomalies exhibiting various shapes such as linear, swarms, and elliptical patterns may be magmatic in origin. Our study highlights that the domain state of the magnetic carriers is an under‐appreciated factor in controlling a rock's magnetization intensity. The results of this study will help guide interpretations of lunar crustal field data acquired by future rovers that will traverse lunar magnetic anomalies.more » « less
-
Abstract Near-Earth supernova blasts which engulf the solar system have left traces of their ejecta in the geological and lunar records. There is now a wealth of data on live radioactive60Fe pointing to a supernova at 3 Myr ago, as well as the recent discovery of an event at 7 Myr ago. We use the available measurements to evaluate the distances to these events. For the better analyzed supernova at 3 Myr, samples include deep-sea sediments, ferromanganese crusts, and lunar regolith; we explore the consistency among and across these measurements, which depends sensitively on the uptake of iron in the samples as well as possible anisotropies in the60Fe fallout. There is also significant uncertainty in the astronomical parameters needed for these calculations. We take the opportunity to perform a parameter study on the effects that the ejected60Fe mass from a core-collapse supernova and the fraction of dust that survives the remnant have on the resulting distance. We find that with an ejected60Fe mass of 3 × 10−5M⊙and a dust fraction of 10%, the distance range for the supernova 3 Myr ago isD∼ 20–140 pc, with the most likely range between 50 and 65 pc. Using the same astrophysical parameters, the distance for the supernova at 7 Myr ago isD∼ 110 pc. We close with a brief discussion of geological and astronomical measurements that can improve these results.more » « less
-
The lunar exosphere is generated by a variety of processes: photodesorption from solar UV radiation (PSD), solar wind ion sputtering, meteoritic bombardment, radioactive decay, and thermal desorption. While remote or orbital temporal measurements provide in situ clues to source mechanisms, individual ejection processes are more easily and deeply investigated in laboratory experiments on returned Apollo samples and analogs, allowing quantitative comparisons at lunar-like pressures and temperature. The importance of laboratory experiments cannot be overemphasized, providing measurements of ejection probabilities relevant to exospheric formation, as well as metrics such as surface charge, surface composition and phase, and meteoritic-impact plume characterization. These parameters can be convolved to describe telescopic observations as well as phenomena observed at the lunar surface by orbital / lander measurements, providing ground truth for models of spatial and temporal variations in the exosphere. The following discussion of laboratory work pertinent to the generation of the lunar atmosphere is a starting point for those interested in laboratory simulations and is by no means an exhaustive review.more » « less
An official website of the United States government

