skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2105876

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Crewed missions to the Moon may resume as early as 2026 with NASA's Artemis III mission, and lunar dust exposure/inhalation is a potentially serious health hazard that requires detailed study. Current dust exposure limits are based on Apollo‐era samples that spent decades in long‐term storage on Earth; their diminished reactivity may lead to underestimation of potential harm that could be caused by lunar dust exposure. In particular, lunar dust contains nanophase metallic iron grains, produced by “space weathering”; the reactivity of this unique component of lunar dust is not well understood. Herein, we employ a chemical reduction technique that exposes lunar simulants to heat and hydrogen gas to produce metallic iron particles on grain surfaces. We assess the capacity of these reduced lunar simulants to generate hydroxyl radical (OH*) when immersed in deionized (DI) water, simulated lung fluid (SLF), and artificial lysosomal fluid (ALF). Lunar simulant reduction produces surface‐adhered metallic iron “blebs” that resemble nanophase metallic iron particles found in lunar dust grains. Reduced samples generate ~5–100× greater concentrations of the oxidative OH* in DI water versus non‐reduced simulants, which we attribute to metallic iron. SLF and ALF appear to reduce measured OH*. The increase in observed OH* generation for reduced simulants implies high oxidative damage upon exposure to lunar dust. Low levels of OH* measured in SLF and ALF imply potential damage to proteins or quenching of OH* generation, respectively. Reduction of lunar dust simulants provides a quick cost‐effective approach to study dusty materials analogous to authentic lunar dust.

     
    more » « less
    Free, publicly-accessible full text available June 27, 2025
  2. Abstract

    During NASA's Apollo missions, inhalation of dust particles from lunar regolith was identified as a potential occupational hazard for astronauts. These fine particles adhered tightly to spacesuits and were unavoidably brought into the living areas of the spacecraft. Apollo astronauts reported that exposure to the dust caused intense respiratory and ocular irritation. This problem is a potential challenge for the Artemis Program, which aims to return humans to the Moon for extended stays in this decade. Since lunar dust is “weathered” by space radiation, solar wind, and the incessant bombardment of micrometeorites, we investigated whether treatment of lunar regolith simulants to mimic space weathering enhanced their toxicity. Two such simulants were employed in this research, Lunar Mare Simulant‐1 (LMS‐1), and Lunar Highlands Simulant‐1 (LHS‐1), which were added to cultures of human lung epithelial cells (A549) to simulate lung exposure to the dusts. In addition to pulverization, previously shown to increase dust toxicity sharply, the simulants were exposed to hydrogen gas at high temperature as a proxy for solar wind exposure. This treatment further increased the toxicity of both simulants, as measured by the disruption of mitochondrial function, and damage to DNA both in mitochondria and in the nucleus. By testing the effects of supplementing the cells with an antioxidant (N‐acetylcysteine), we showed that a substantial component of this toxicity arises from free radicals. It remains to be determined to what extent the radicals arise from the dust itself, as opposed to their active generation by inflammatory processes in the treated cells.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    Magmatic gas exsolving during late-stage cooling of shallow magmas has been considered an important facilitator of low-pressure alteration and metal transport. However, the chemical properties of such gas, particularly its metal transport mechanisms and capacity, remain elusive. Trace elements in minerals produced by gas-mediated surface reaction or precipitation from gas capture details of gas composition and reaction pathways. However, interpretation of mineral trace element contents is dependent on understanding crystallographic controls on gas/mineral partitioning. This work investigates the structural accommodation of As, Mn, Ga, Ge, Fe, and Ti in vapor-deposited topaz of vesicular topaz rhyolite from the Thomas Range, Utah, through single-crystal synchrotron microbeam X-ray techniques on picogram quantities of those trace elements. X-ray absorption near edge structure (XANES) data indicates that these elements are incorporated into topaz as As5+, Fe3+, Mn3+, Ti4+, Ga3+, and Ge4+. Extended X-ray absorption fine structure (EXAFS) analysis for these trace elements, compared to EXAFS of structural Al and Si, reveals that As5+ and Ge4+ are incorporated directly into the tetrahedral site of the topaz structure, with the octahedral site accommodating Mn3+, Fe3+, Ga3+, and Ti4+. For As5+ and Fe3+, the structural impact of substitution extends to at least second neighbors (other elements were only resolvable to first neighbors). Further interpretation of the EXAFS results suggests that the substitution of Ti4+ results in increased distortion of the octahedral site, while the other trace elements induce more uniform expansion correlating in magnitude to their ionic radius. Comparison of quantified X-ray fluorescence (XRF) data for two topaz crystals from this rhyolite reveals variable trace element concentrations for As5+, Fe3+, Ga3+, and Ti4+, reflective of a source gas undersaturated in these trace elements changing in concentration over the period of topaz deposition. The identical Ge4+ content of the two topaz crystals suggests that Ge4+ in the gas was buffered by the growth of another Ge4+-bearing phase, such as quartz. The very low Mn3+ content in the topaz crystals does not reflect the abundance of Mn3+ in the gas (saturation of Mn is evidenced by coexisting bixbyite). Instead, it suggests a strong Jahn-Teller inhibitory effect to the substitution of Mn3+ for Al3+ in the distorted octahedral site of topaz. It is proposed that exsolution of an HF-enriched gas from cooling rhyolitic magma led to local scouring of Al, Si, and trace metals from the magma. Once topaz crystals nucleated, self-catalyzed reactions that recycle HF led to continued growth of topaz.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024