We study how to optimize the latent space of neural shape generators that map latent codes to 3D deformable shapes. The key focus is to look at a deformable shape generator from a differential geometry perspective. We define a Riemannian metric based on as-rigid-as-possible and as-conformal-as-possible deformation energies. Under this metric, we study two desired properties of the latent space: 1) straight-line interpolations in latent codes follow geodesic curves; 2) latent codes disentangle pose and shape variations at different scales. Strictly enforcing the geometric interpolation property, however, only applies if the metric matrix is a constant. We show how to achieve this property approximately by enforcing that geodesic interpolations are axis-aligned, i.e., interpolations along coordinate axis follow geodesic curves. In addition, we introduce a novel approach that decouples pose and shape variations via generalized eigendecomposition. We also study efficient regularization terms for learning deformable shape generators, e.g., that promote smooth interpolations. Experimental results on benchmark datasets show that our approach leads to interpretable latent codes, improves the generalizability of synthetic shapes, and enhances performance in geodesic interpolation and geodesic shooting.
This content will become publicly available on June 14, 2025
- Award ID(s):
- 2125644
- PAR ID:
- 10520499
- Publisher / Repository:
- Arxiv
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines.more » « less
-
Abstract Proliferation of high‐resolution imaging data in recent years has led to substantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two‐dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark‐based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape‐preserving transformation of a curve. The transition to the curve‐based approach moves the mathematical setting of shape analysis from finite‐dimensional non‐Euclidean spaces to infinite‐dimensional ones. We discuss some of the challenges associated with the infinite‐dimensionality of the shape space, and illustrate the use of geometry‐based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state‐of‐the‐art in the field.
This article is categorized under:
Image and Spatial Data < Data: Types and Structure
Computational Mathematics < Applications of Computational Statistics
-
Summary We propose a curve-based Riemannian geometric approach for general shape-based statistical analyses of tumours obtained from radiologic images. A key component of the framework is a suitable metric that enables comparisons of tumour shapes, provides tools for computing descriptive statistics and implementing principal component analysis on the space of tumour shapes and allows for a rich class of continuous deformations of a tumour shape. The utility of the framework is illustrated through specific statistical tasks on a data set of radiologic images of patients diagnosed with glioblastoma multiforme, a malignant brain tumour with poor prognosis. In particular, our analysis discovers two patient clusters with very different survival, subtype and genomic characteristics. Furthermore, it is demonstrated that adding tumour shape information to survival models containing clinical and genomic variables results in a significant increase in predictive power.
-
Abstract Applications in data science, shape analysis, and object classification frequently require comparison of probability distributions defined on different ambient spaces. To accomplish this, one requires a notion of distance on a given class of metric measure spaces—that is, compact metric spaces endowed with probability measures. Such distances are typically defined as comparisons between metric measure space invariants, such as distance distributions (also referred to as shape distributions, distance histograms, or shape contexts in the literature). Generally, distances defined in terms of distance distributions are actually pseudometrics, in that they may vanish when comparing nonisomorphic spaces. The goal of this paper is to set up a formal framework for assessing the discrimininative power of distance distributions, that is, the extent to which these pseudometrics fail to define proper metrics. We formulate several precise inverse problems in terms of these invariants and answer them in several categories of metric measure spaces, including the category of plane curves, where we give a counterexample to the curve histogram conjecture of Brinkman and Olver, the categories of embedded and Riemannian manifolds, where we obtain sphere rigidity results, and the category of metric graphs, where we obtain a local injectivity result along the lines of classical work of Boutin and Kemper on point cloud configurations. The inverse problems are further contextualized by the introduction of a variant of the Gromov–Wasserstein distance on the space of metric measure spaces, which is inspired by the original Monge formulation of optimal transport.