skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms
Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub–50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance, dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this should enable purely magnetic dipolar gates with kilohertz speed.  more » « less
Award ID(s):
2317134 2208004
PAR ID:
10520554
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
384
Issue:
6695
ISSN:
0036-8075
Page Range / eLocation ID:
546 to 551
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scanning tunneling electroluminescence (STL) microscopy is performed on a 3 nm‐thick InGaN/GaN quantum well (QW) with [In] = 0.23 such that the main light emission occurs in the green. The technique is used to map the radiative recombination properties at a scale of a few nanometers and correlate the local electroluminescence map with the surface topography simultaneously imaged by scanning tunneling microscopy. While the expected green emission is observed all over the sample, measurements performed on a 500 nm × 500 nm area around a 150 nm‐large and 2.5 nm‐deep hexagonal defect reveal intense emission peaks at higher energies close to the defect edges, features which are not visible in the macrophotoluminescence spectrum of the sample. Via a fitting of the local tunneling electroluminescence spectra, quantitative information on the fluctuations of the intensity, peak energy, width, and phonon replica intensity of the different spectral contributions is obtained, which provides information on carrier localization in the QW. This procedure also indicates that the carrier diffusion length on the probed area of the QW is shorter than 50 nm. 
    more » « less
  2. Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and detection. Here, we design and fabricate an ultrathin dielectric metalens with a high numerical aperture of 0.88 at 1064 nm in vacuum. It consists of 500-nm-thick silicon nano-antennas, which are compatible with an ultrahigh vacuum. We demonstrate optical levitation of nanoparticles in vacuum with a single metalens. The trapping frequency can be tuned by changing the laser power and polarization. We also transfer a levitated nanoparticle between two separated optical tweezers. Optical levitation with an ultrathin metalens in vacuum provides opportunities for a wide range of applications including on-chip sensing. Such metalenses will also be useful for trapping ultracold atoms and molecules. 
    more » « less
  3. The quantum matter synthesizer (QMS) is a new quantum simulation platform in which individual particles in a lattice can be resolved and re-arranged into arbitrary patterns. The ability to spatially manipulate ultracold atoms and control their tunneling and interactions at the single-particle level allows full control of a many-body quantum system. We present the design and characterization of the QMS, which integrates into a single ultra-stable apparatus a two-dimensional optical lattice, a moving optical tweezer array formed by a digital micromirror device, and site-resolved atomic imaging. We demonstrate excellent mechanical stability between the lattice and tweezer array with relative fluctuations below 10 nm, diffraction-limited imaging at a resolution of 655 nm, and high-speed real-time control of the tweezer array at a 2.52 kHz refresh rate, which will be adopted to realize fast rearrangement of atoms. The QMS also features new technologies and schemes, such as nanotextured anti-reflective windows and all-optical long-distance transport of atoms. 
    more » « less
  4. null (Ed.)
    Far-field analysis of small objects is severely constrained by the diffraction limit. Existing tools achieving sub-diffraction resolution often utilize point-by-point image reconstruction via scanning or labelling. Here, we present a new technique capable of fast and accurate characterization of two-dimensional structures with at least wavelength/25 theoretical resolution, based on a single far-field intensity measurement. Experimentally, we realized this technique resolving the smallest-available to us 180-nm-scale features with 845-nm laser light, reaching a resolution of wavelength/5. A comprehensive analysis of machine learning algorithms was performed to gain insight into the learning process and to understand the flow of subwavelength information through the system. Image parameterization, suitable for diffractive configurations and highly tolerant to random noise was developed. The proposed technique can be applied to new optical characterization tools with high spatial resolution, fast data acquisition and artificial intelligence, such as high-speed nanoscale metrology and quality control, and can be further developed to high-resolution spectroscopy 
    more » « less
  5. ABSTRACT This paper is the second in a pair of papers on the topic of the generation of a two-colour artificial star [which we term a laser photometric ratio star (LPRS)] of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques, respectively, described in both this and the previous paper would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms for establishing a spectrophotometric calibration ratio of unprecedented precision, from above most of Earth’s atmosphere, for upcoming telescopic observations across astronomy and atmospheric physics; thus greatly improving the performance of upcoming measurements of dark energy parameters using type Ia supernovae. The technique described in this paper has the advantage of producing a much brighter (specifically, brighter by approximately a factor of 103) LPRS, using lower power (≤30 W average power) lasers, than the technique using a single 500 W average power laser described in the first paper of this pair. However, the technique described here would require polarization filters to be installed into the telescope camera in order to sufficiently remove laser atmospheric Rayleigh backscatter from telescope images, whereas the technique described in the first paper would only require more typical wavelength filters in order to sufficiently remove laser Rayleigh backscatter. 
    more » « less