skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An algorithm-guided Ediacaran global composite δ13Ccarb–Bayesian age model
While it remains uncertain whether excursions in the stable carbon isotopic composition of Ediacaran marine carbonate (δ13Ccarb) represent globally synchronous events (or a direct measure of ocean carbon cycling), the absence of widely distributed and readily preservable fauna, and the presence of several iconic carbon isotope excursions (CIEs), has sustained δ13Ccarb correlation as the primary means to establish relative time relationships for Ediacaran successions. Here we present an Ediacaran global δ13Ccarb composite built with a dynamic time warping (DTW) time-normalization algorithm that generates libraries of least-squares alignments between chemostratigraphic records of unequal length and distinct sediment accumulation rates. When developing a δ13Ccarb composite for each of 16 globally distributed Ediacaran paleo-depositional regions, we selected high Pearson r alignments that conformed with published geological guidance about the correlation of constituent sections. When applying DTW to align these regional algorithmic composites into one global δ13Ccarb stack, we selected alignments that allied the excursions that field workers have established (or speculated) are the Marinoan cap carbonate excursion, the Shuram excursion, and/or the basal Cambrian excursion. There are strengths and weaknesses to making explicit the temporal relationships (point-to-point correspondences) often left implicit in visual correlation. One strength is to extrapolate depositional ages by means of isotopic correlation, and here we explored this with a Bayesian Markov chain Monte Carlo age model that predicts a median age, and uncertainty, for every carbonate stratum in the global Ediacaran δ13Ccarb composite. Yet, one must caution against a false accuracy that can arise from selecting one alignment among many possibilities––the likelihood that time-uncertain time series can be stretched and squeezed into one unequivocal alignment is low. Thus, while these alignments are grounded in the expert assessment of the field worker, this global Ediacaran δ13Ccarb–Bayesian age model should be viewed as a working hypothesis to enrich, but not arbitrate, discussions of the correlation, synchrony, and completeness of Ediacaran successions.  more » « less
Award ID(s):
2025735
PAR ID:
10520572
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Palaeogeography palaeoclimatology palaeoecology
ISSN:
0031-0182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Tonian–Ediacaran Hecla Hoek succession of Svalbard, Norway, represents one of the most complete and well-preserved Neoproterozoic sedimentary successions worldwide. With diverse fossil assemblages, an extensive carbonate δ13C record, and sedimentary evidence for two distinct Cryogenian glaciations, this succession will continue to yield insights into the Neoproterozoic Earth system; however, at present there are no direct radiometric age constraints for these strata. We present two new Re-Os ages and initial Os isotope data that constrain the timing of Neoproterozoic glaciation in Svalbard, providing further support for two globally synchronous Cryogenian glaciations and insight into pre- and post-snowball global weathering conditions. An age from the Russøya Member (Elbobreen Formation) facilitates correlation of the negative carbon isotope excursion recorded therein with the pre-glacial “Islay” excursion of the Callison Lake Formation of northwestern Canada and the Didikama and Matheos Formations of Ethiopia. We propose that this globally synchronous ca. 735 Ma carbon isotope excursion be referred to as the Russøya excursion with northeastern Svalbard as the type locality. This new age provides an opportunity to construct a time-calibrated geological framework in Svalbard to assess connections between biogeochemical cycling, evolutionary innovations within the eukaryotes, and the most extreme climatic changes in Earth history. 
    more » « less
  2. The Lower Mississippian Lodgepole Formation of Montana and Wyoming records one of the largest positive carbon isotopic excursions of the Phanerozoic. This globally recognized up to 7‰ increase in δ13Ccarb values occurs across the North American Kinderhookian-Osagean boundary (referred to as the K-O excursion). It has been argued to reflect significant organic carbon burial, possibly linked to the onset of the Late Paleozoic Ice Age. Previously proposed correlations between carbon isotopic patterns and the sequence stratigraphic framework within these strata suggests that changes in sea level could have played a significant role in the expression and/or magnitude of the K-O excursion in the Madison Shelf. This study explores the relationship between carbon isotopic values and sea level change at multiple scales. To accomplish this, we provide a comprehensive overview of the sedimentological and stratigraphic framework and address uncertainty about the number of sequences in the Lodgepole Formation. Our results support a three-sequence model for the Lodgepole Formation. Based on the number of sequences and the placement of sequence stratigraphic surfaces, we see little evidence of statistically significant correlation between carbon isotopic trends and the sequence stratigraphic framework. We argue that sea level change was not the primary driving mechanism for carbon isotopic trends in the Madison Shelf, nor the K-O excursion. Instead, we support models that invoke global ocean anoxia and/or destabilization of the global carbon cycle due to land plants. 
    more » « less
  3. The Ediacaran-Cambrian transition interval is described for the west part of the Gondwana Supercontinent. This key interval in Earth’s history is recorded in the upper and lower part of the Tagatiya Guazú and Cerro Curuzu formations, Itapucumi Group, Paraguay, encompassing a sedimentary succession deposited in a tidally influenced mixed carbonate-siliciclastic ramp. The remarkable presence of cosmopolitan Ediacaran shelly fossils and treptichnids, which are recorded in carbonate and siliciclastic deposits, respectively, suggests their differential preservation according to lithology. Their distribution is conditioned by substrate changes that are related to cyclic sedimentation. The associated positive steady trend of the δ13C values in the carbonate facies indicates that the Tagatiya Guazú succession is correlated to the late Ediacaran positive carbon isotope plateau. Sensitive high-resolution ion microprobe U-Pb ages of volcanic zircons from an ash bed ∼30 m above the fossil-bearing interval in the Cerro Curuzu Formation indicate an Early Cambrian (Fortunian) depositional age of 535.7 ± 5.2 Ma. As in other coeval sedimentary successions worldwide, the co-occurrence of typical Ediacaran skeletal taxa and relatively complex trace fossils in the studied strata highlights the global nature of key evolutionary innovations. 
    more » « less
  4. Abstract Neoproterozoic–Cambrian rocks of the Windermere Supergroup and overlying units record the breakup of Rodinia and formation of the northwestern Laurentian ancestral continental margin. Understanding the nature and timing of this transition has been hampered by difficulty correlating poorly dated sedimentary successions from contrasting depositional settings across Mesozoic structures. Here we present new litho- and chemo-stratigraphic data from a Cryogenian–lower Cambrian succession in east-central Yukon (Canada), establish correlations between proximal and distal parts of the upper Windermere Supergroup and related strata in the northern Canadian Cordillera, and consider implications for the formation of the northwestern Laurentian margin. The newly defined Nadaleen Formation hosts the first appearance of Ediacaran macrofossils, while the overlying Gametrail Formation features a large negative carbon isotope anomaly with δ13Ccarb values as low as –13‰ that correlates with the globally developed Shuram-Wonoka anomaly. We also define the Rackla Group, which includes the youngest (Ediacaran) portions of the Windermere Supergroup in the northern Cordillera. The top of the Windermere Supergroup is marked by an unconformity above the Risky Formation that passes into a correlative conformity in the Nadaleen River area. This surface has been interpreted to mark the top of the rift-related succession, but we draw attention to evidence for tectonic instability through the early-middle Cambrian and argue that the transition from rifting to post-rift thermal subsidence is marked by a widespread unconformity that underlies upper Cambrian carbonate rocks. This is younger than the interpreted age of the rift to post-rift transition elsewhere along the ancestral western Laurentian continental margin. 
    more » « less
  5. A presumed link between carbon isotopic trends and sea level change features prominently in many studies of epicontinental carbonates. In these shallow marine environments, a combination of basin restriction, burial/oxidation of organic carbon, proximity to terrestrial carbon sources, carbonate mineralogy, and/or meteoric influence can result in δ13Ccarb records that are distinct from that of the open ocean. Because many of these processes are linked to sea level change, it has been argued that sea level might exert a significant and systematic control on the δ13Ccarb records from epicontinental settings. Multiple studies have attempted to document sea level's influence on carbon isotopic trends, but they do so with only limited constraints on sea level change and without objective evaluations of interpreted trends and relationships. We argue that the complex and complicated set of processes influencing carbon isotopic values in epicontinental settings requires a systematic approach to truly address the question of sea level's influence on δ13Ccarb. Only by integrating carbon isotopic records with a detailed sedimentological and sequence stratigraphic framework can we properly track changes in depositional environments and reconstruct the transgressive-regressive history of the rocks. Trends and relationships in these robust datasets can be evaluated with rank correlation tests specifically designed and empirically tested to deal with noisy datasets. In short, we map a possible path forward for systematic testing of the relationship between sea level and δ13Ccarb. 
    more » « less