skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is there a link between carbon isotopes and sea level in epicontinental carbonate settings?
A presumed link between carbon isotopic trends and sea level change features prominently in many studies of epicontinental carbonates. In these shallow marine environments, a combination of basin restriction, burial/oxidation of organic carbon, proximity to terrestrial carbon sources, carbonate mineralogy, and/or meteoric influence can result in δ13Ccarb records that are distinct from that of the open ocean. Because many of these processes are linked to sea level change, it has been argued that sea level might exert a significant and systematic control on the δ13Ccarb records from epicontinental settings. Multiple studies have attempted to document sea level's influence on carbon isotopic trends, but they do so with only limited constraints on sea level change and without objective evaluations of interpreted trends and relationships. We argue that the complex and complicated set of processes influencing carbon isotopic values in epicontinental settings requires a systematic approach to truly address the question of sea level's influence on δ13Ccarb. Only by integrating carbon isotopic records with a detailed sedimentological and sequence stratigraphic framework can we properly track changes in depositional environments and reconstruct the transgressive-regressive history of the rocks. Trends and relationships in these robust datasets can be evaluated with rank correlation tests specifically designed and empirically tested to deal with noisy datasets. In short, we map a possible path forward for systematic testing of the relationship between sea level and δ13Ccarb.  more » « less
Award ID(s):
2042276
PAR ID:
10533013
Author(s) / Creator(s):
;
Publisher / Repository:
Evolving Earth
Date Published:
Journal Name:
Evolving Earth
Volume:
1
Issue:
1
ISSN:
2950-1172
Page Range / eLocation ID:
100016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Lower Mississippian Lodgepole Formation of Montana and Wyoming records one of the largest positive carbon isotopic excursions of the Phanerozoic. This globally recognized up to 7‰ increase in δ13Ccarb values occurs across the North American Kinderhookian-Osagean boundary (referred to as the K-O excursion). It has been argued to reflect significant organic carbon burial, possibly linked to the onset of the Late Paleozoic Ice Age. Previously proposed correlations between carbon isotopic patterns and the sequence stratigraphic framework within these strata suggests that changes in sea level could have played a significant role in the expression and/or magnitude of the K-O excursion in the Madison Shelf. This study explores the relationship between carbon isotopic values and sea level change at multiple scales. To accomplish this, we provide a comprehensive overview of the sedimentological and stratigraphic framework and address uncertainty about the number of sequences in the Lodgepole Formation. Our results support a three-sequence model for the Lodgepole Formation. Based on the number of sequences and the placement of sequence stratigraphic surfaces, we see little evidence of statistically significant correlation between carbon isotopic trends and the sequence stratigraphic framework. We argue that sea level change was not the primary driving mechanism for carbon isotopic trends in the Madison Shelf, nor the K-O excursion. Instead, we support models that invoke global ocean anoxia and/or destabilization of the global carbon cycle due to land plants. 
    more » « less
  2. While it remains uncertain whether excursions in the stable carbon isotopic composition of Ediacaran marine carbonate (δ13Ccarb) represent globally synchronous events (or a direct measure of ocean carbon cycling), the absence of widely distributed and readily preservable fauna, and the presence of several iconic carbon isotope excursions (CIEs), has sustained δ13Ccarb correlation as the primary means to establish relative time relationships for Ediacaran successions. Here we present an Ediacaran global δ13Ccarb composite built with a dynamic time warping (DTW) time-normalization algorithm that generates libraries of least-squares alignments between chemostratigraphic records of unequal length and distinct sediment accumulation rates. When developing a δ13Ccarb composite for each of 16 globally distributed Ediacaran paleo-depositional regions, we selected high Pearson r alignments that conformed with published geological guidance about the correlation of constituent sections. When applying DTW to align these regional algorithmic composites into one global δ13Ccarb stack, we selected alignments that allied the excursions that field workers have established (or speculated) are the Marinoan cap carbonate excursion, the Shuram excursion, and/or the basal Cambrian excursion. There are strengths and weaknesses to making explicit the temporal relationships (point-to-point correspondences) often left implicit in visual correlation. One strength is to extrapolate depositional ages by means of isotopic correlation, and here we explored this with a Bayesian Markov chain Monte Carlo age model that predicts a median age, and uncertainty, for every carbonate stratum in the global Ediacaran δ13Ccarb composite. Yet, one must caution against a false accuracy that can arise from selecting one alignment among many possibilities––the likelihood that time-uncertain time series can be stretched and squeezed into one unequivocal alignment is low. Thus, while these alignments are grounded in the expert assessment of the field worker, this global Ediacaran δ13Ccarb–Bayesian age model should be viewed as a working hypothesis to enrich, but not arbitrate, discussions of the correlation, synchrony, and completeness of Ediacaran successions. 
    more » « less
  3. null (Ed.)
    Isotopic measurements of organic carbon (δ13Corg), carbonate carbon (δ13Ccarb), and oxygen (δ18Ocarb) were made at low stratigraphic resolution on samples from International Ocean Discovery Program (IODP) Expedition 369, Hole U1515A (southeast Indian Ocean). The δ13Corg values ranged from −30.2‰ to −21.0‰, with an average of −24‰ ± 2‰, whereas δ13Ccarb values ranged from 0.5‰ to 1.4‰ with an average of 1.1‰ ± 0.3‰. Carbonate δ18Ocarb values averaged 1.1‰ ± 0.8‰ and ranged from −0.3‰ to 2.4‰. Initial plans were to use the δ13Ccarb and δ13Corg profiles to identify changes in the carbon cycle at the site and to compare local patterns to global records; however, poor core recovery and lack of solid age control limited the number of suitable samples and precluded meaningful interpretation of stratigraphic patterns. 
    more » « less
  4. Abstract Stratigraphic variability in the geochemistry of sedimentary rocks provides critical data for interpreting paleoenvironmental change throughout Earth history. However, the vast majority of pre-Jurassic geochemical records derive from shallow-water carbonate platforms that may not reflect global ocean chemistry. Here, we used calcium isotope ratios (δ44Ca) in conjunction with minor-element geochemistry (Sr/Ca) and field observations to explore the links among sea-level change, carbonate mineralogy, and marine diagenesis and the expression of a globally documented interval of elevated carbon isotope ratios (δ13C; Hirnantian isotopic carbon excursion [HICE]) associated with glaciation in Upper Ordovician shallow-water carbonate strata from Anticosti Island, Canada, and the Great Basin, Nevada and Utah, USA. The HICE on Anticosti is preserved in limestones with low δ44Ca and high Sr/Ca, consistent with aragonite as a major component of primary mineralogy. Great Basin strata are characterized by lateral gradients in δ44Ca and δ13C that reflect variations in the extent of early marine diagenesis across the platform. In deep-ramp settings, deposition during synglacial sea-level lowstand and subsequent postglacial flooding increased the preservation of an aragonitic signature with elevated δ13C produced in shallow-water environments. In contrast, on the mid- and inner ramp, extensive early marine diagenesis under seawater-buffered conditions muted the magnitude of the shift in δ13C. The processes documented here provide an alternative explanation for variability in a range of geochemical proxies preserved in shallow-water carbonates at other times in Earth history, and challenge the notion that these proxies necessarily record changes in the global ocean. 
    more » « less
  5. Assessing potential for diagenetic overprinting of climatic signals in benthic foraminifera: Preliminary results. Robert K. Poirier, Reinhard Kozdon, Maureen Raymo, Morgan Schaller Benthic foraminiferal stable isotope records (δ18O, δ13C) are the most common paleoclimate records produced to date, which capture changes in temperature, ice volume, and the global carbon system on orbital to sub-millennial timescales. General relationships between deep sea δ18O and sea level have long been established, and more recent paired δ18O and Mg/Ca records seek to disentangle the temperature and ice volume components of corresponding sea level records. However, the extent to which diagenesis may potentially alter the original isotopic signature recorded in tests of benthic foraminifera remains relatively undefined. We present preliminary results of a project focused on constraining the extent to which such diagenetic overprinting might alter sea level estimates based on records produced from modern to mid-Pliocene Cibicidoides and Uvigerina specimens. These include advanced imaging techniques (SEM, CL-spectroscopy), single shell stable isotope analyses (δ18O, δ13C), and chamber wall trace metal profiles (LA-ICPMS) paired with in situ δ18O analyses (SIMS). In addition, we present strict specimen screening criteria developed based on a new quantitative assessment of visual preservation in both individual foraminiferal tests and whole assemblages. http://forams2018.wp.st-andrews.ac.uk Session II: Advances in Foraminiferal Geochemistry Conveners: Jelle Bijma, Howard Spero Session Overview: http://forams2018.wp.st-andrews.ac.uk/program/ 
    more » « less