null
(Ed.)
Abstract It is proved that a map $${\varphi }\colon R\to S$$ of commutative Noetherian rings that is essentially of finite type and flat is locally complete intersection if and only if $$S$$ is proxy small as a bimodule. This means that the thick subcategory generated by $$S$$ as a module over the enveloping algebra $$S\otimes _RS$$ contains a perfect complex supported fully on the diagonal ideal. This is in the spirit of the classical result that $${\varphi }$$ is smooth if and only if $$S$$ is small as a bimodule; that is to say, it is itself equivalent to a perfect complex. The geometric analogue, dealing with maps between schemes, is also established. Applications include simpler proofs of factorization theorems for locally complete intersection maps.
more »
« less