skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extratropical storms induce carbon outgassing over the Southern Ocean
Abstract The strength and variability of the Southern Ocean carbon sink is a significant source of uncertainty in the global carbon budget. One barrier to reconciling observations and models is understanding how synoptic weather patterns modulate air-sea carbon exchange. Here, we identify and track storms using atmospheric sea level pressure fields from reanalysis data to assess the role that storms play in driving air-sea CO2exchange. We examine the main drivers of CO2fluxes under storm forcing and quantify their contribution to Southern Ocean annual air-sea CO2fluxes. Our analysis relies on a forced ocean-ice simulation from the Community Earth System Model, as well as CO2fluxes estimated from Biogeochemical Argo floats. We find that extratropical storms in the Southern Hemisphere induce CO2outgassing, driven by CO2disequilibrium. However, this effect is an order of magnitude larger in observations compared to the model and caused by different reasons. Despite large uncertainties in CO2fluxes and storm statistics, observations suggest a pivotal role of storms in driving Southern Ocean air-sea CO2outgassing that remains to be well represented in climate models, and needs to be further investigated in observations.  more » « less
Award ID(s):
1936222 2332379
PAR ID:
10520620
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
7
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Southern Ocean is an important region for both heat and carbon uptake, due in large part to wind-driven circulation. This region also continually experiences strong winds associated with the passage of synoptic storms, which influence the upper ocean through strong fluxes of momentum, heat, freshwater, and gases. While studies have found that storms can induce strong carbon outgassing, their role in the combined heat and carbon uptake remains unknown. In this work, we explore the climatological impact of storms on the Southern Ocean combined heat and carbon uptake through two preindustrial coupled climate model runs with contrasting seasonal carbon fluxes. We use a feature tracking system to identify storms and create composites for storm-following and post-storm anomalous fluxes of heat and carbon. Storms induce a net anomalous release of heat and carbon from the ocean throughout the year, with clear seasonality in the magnitude of the fluxes that coincide with the background seasonal cycles. We find a strong model dependency for the storm-driven anomalous carbon fluxes, both in terms of the seasonal range and timing of maximum outgassing. Storm-induced anomalous fluxes are dampened on the order of days after the storm passes, with a small continued release of heat that is most persistent in the winter. Our study underlines the high uncertainty about the seasonal nature of storm impacts on the ocean and suggests that evolving atmospheric and oceanic conditions could impose opposing shifts in the future seasonality of storm impacts. 
    more » « less
  2. The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations. 
    more » « less
  3. Abstract The Southern Ocean regulates atmospheric CO2and Earth's climate as a critical region for air‐sea gas exchange, delicately poised between being a CO2source and sink. Here, we estimate how long a water mass has remained isolated from the atmosphere and utilize14C/12C ratios (Δ14C) to trace the pathway and escape route of carbon sequestered in the deep ocean through the mixed layer to the atmosphere. The position of our core at the northern margin of the Southern Indian Ocean, tracks latitudinal shifts of the Southern Ocean frontal zones across the deglaciation. Our results suggest an expanded glacial Antarctic region trapped CO2, whereas deglacial expansion of the subantarctic permitted ventilation of the trapped CO2, contributing to a rapid atmospheric CO2rise. We identify frontal positions as a key factor balancing CO2outgassing versus sequestration in a region currently responsible for nearly half of global ocean CO2uptake. 
    more » « less
  4. Through biological activity, marine dissolved inorganic carbon (DIC) is transformed into different types of biogenic carbon available for export to the ocean interior, including particulate organic carbon (POC), dissolved organic carbon (DOC), and particulate inorganic carbon (PIC). Each biogenic carbon pool has a different export efficiency that impacts the vertical ocean carbon gradient and drives natural air–sea carbon dioxide gas (CO2) exchange. In the Southern Ocean (SO), which presently accounts for ~40% of the anthropogenic ocean carbon sink, it is unclear how the production of each biogenic carbon pool contributes to the contemporary air–sea CO2exchange. Based on 107 independent observations of the seasonal cycle from 63 biogeochemical profiling floats, we provide the basin-scale estimate of distinct biogenic carbon pool production. We find significant meridional variability with enhanced POC production in the subantarctic and polar Antarctic sectors and enhanced DOC production in the subtropical and sea-ice-dominated sectors. PIC production peaks between 47°S and 57°S near the “great calcite belt.” Relative to an abiotic SO, organic carbon production enhances CO2uptake by 2.80 ± 0.28 Pg C y1, while PIC production diminishes CO2uptake by 0.27 ± 0.21 Pg C y1. Without organic carbon production, the SO would be a CO2source to the atmosphere. Our findings emphasize the importance of DOC and PIC production, in addition to the well-recognized role of POC production, in shaping the influence of carbon export on air–sea CO2exchange. 
    more » « less
  5. We present improved estimates of air–sea CO2exchange over three latitude bands of the Southern Ocean using atmospheric CO2measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science374, 1275–1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθesurfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air–sea CO2exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2observations. 
    more » « less