skip to main content


This content will become publicly available on July 31, 2025

Title: Going Beyond XAI: A Systematic Survey for Explanation-Guided Learning

As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced human virtues such as fairness, accountability, transparency, and unbiasedness. Recently, techniques in Explainable Artificial Intelligence (XAI) have been attracting considerable attention and have tremendously helped Machine Learning (ML) engineers in understand AI models. However, at the same time, we started to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI, how can we better empower ML engineers in steering their DNNs so that the model’s reasonableness and performance can be improved as intended? This article provides a timely and extensive literature overview of the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs’ reasoning process by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide a formal definition of EGL and its general learning paradigm. Second, an overview of the key factors for EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics for EGL are provided. Finally, the current and potential future application areas and directions of EGL are discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative studies among existing EGL models in various popular application domains, such as Computer Vision and Natural Language Processing domains. Additional resources related to event prediction are included in the article website:https://kugaoyang.github.io/EGL/

 
more » « less
Award ID(s):
2403312 2318831 2113350 2103592
NSF-PAR ID:
10520953
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
56
Issue:
7
ISSN:
0360-0300
Page Range / eLocation ID:
1 to 39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Indecipherable black boxes are common in machine learning (ML), but applications increasingly require explainable artificial intelligence (XAI). The core of XAI is to establish transparent and interpretable data-driven algorithms. This work provides concrete tools for XAI in situations where prior knowledge must be encoded and untrustworthy inferences flagged. We use the “learn to optimize” (L2O) methodology wherein each inference solves a data-driven optimization problem. Our L2O models are straightforward to implement, directly encode prior knowledge, and yield theoretical guarantees (e.g. satisfaction of constraints). We also propose use of interpretable certificates to verify whether model inferences are trustworthy. Numerical examples are provided in the applications of dictionary-based signal recovery, CT imaging, and arbitrage trading of cryptoassets. Code and additional documentation can be found athttps://xai-l2o.research.typal.academy.

     
    more » « less
  2. Abstract Recently artificial intelligence (AI) and machine learning (ML) models have demonstrated remarkable progress with applications developed in various domains. It is also increasingly discussed that AI and ML models and applications should be transparent, explainable, and trustworthy. Accordingly, the field of Explainable AI (XAI) is expanding rapidly. XAI holds substantial promise for improving trust and transparency in AI-based systems by explaining how complex models such as the deep neural network (DNN) produces their outcomes. Moreover, many researchers and practitioners consider that using provenance to explain these complex models will help improve transparency in AI-based systems. In this paper, we conduct a systematic literature review of provenance, XAI, and trustworthy AI (TAI) to explain the fundamental concepts and illustrate the potential of using provenance as a medium to help accomplish explainability in AI-based systems. Moreover, we also discuss the patterns of recent developments in this area and offer a vision for research in the near future. We hope this literature review will serve as a starting point for scholars and practitioners interested in learning about essential components of provenance, XAI, and TAI. 
    more » « less
  3. Many organizations seek to ensure that machine learning (ML) and artificial intelligence (AI) systems work as intended in production but currently do not have a cohesive methodology in place to do so. To fill this gap, we propose MLTE (Machine Learning Test and Evaluation, colloquially referred to as "melt"), a framework and implementation to evaluate ML models and systems. The framework compiles state-of-the-art evaluation techniques into an organizational process for interdisciplinary teams, including model developers, software engineers, system owners, and other stakeholders. MLTE tooling supports this process by providing a domain-specific language that teams can use to express model requirements, an infrastructure to define, generate, and collect ML evaluation metrics, and the means to communicate results. 
    more » « less
  4. Abstract

    We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times.

     
    more » « less
  5. Abstract

    Computational workflows are widely used in data analysis, enabling automated tracking of steps and storage of provenance information, leading to innovation and decision-making in the scientific community. However, the growing popularity of workflows has raised concerns about reproducibility and reusability which can hinder collaboration between institutions and users. In order to address these concerns, it is important to standardize workflows or provide tools that offer a framework for describing workflows and enabling computational reusability. One such set of standards that has recently emerged is the Common Workflow Language (CWL), which offers a robust and flexible framework for data analysis tools and workflows. To promote portability, reproducibility, and interoperability of AI/ML workflows, we developedgeoweaver_cwl, a Python package that automatically describes AI/ML workflows from a workflow management system (WfMS) named Geoweaver into CWL. In this paper, we test our Python package on multiple use cases from different domains. Our objective is to demonstrate and verify the utility of this package. We make all the code and dataset open online and briefly describe the experimental implementation of the package in this paper, confirming thatgeoweaver_cwlcan lead to a well-versed AI process while disclosing opportunities for further extensions. Thegeoweaver_cwlpackage is publicly released online athttps://pypi.org/project/geoweaver-cwl/0.0.1/and exemplar results are accessible at:https://github.com/amrutakale08/geoweaver_cwl-usecases.

     
    more » « less