skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of feathers on drag in plunge‐diving birds
Abstract This study explores the impact of feathers on the hydrodynamic drag experienced by diving birds, which is critical to their foraging efficiency and survival. Employing a novel experimental approach, we analyzed the kinematics of both feathered and nonfeathered projectiles during their transition from air to water using high‐speed imaging and an onboard accelerometer. The drag coefficients were determined through two methods: a direct calculation from the acceleration data and a theoretical approach fitted to the observed velocity profiles. Our results indicate that feathers significantly increase the drag force during water entry, with feathered projectiles exhibiting approximately double the drag coefficient of their smooth counterparts. These findings provide new insights into the role of avian feather morphology in diving mechanics and have potential implications for the design of bioinspired aquatic vehicles in engineering. The study also discusses the biological implications of increased drag due to feathers and suggests that factors such as body shape might play a more critical role in the diving capabilities of birds than previously understood.  more » « less
Award ID(s):
2002714
PAR ID:
10520981
Author(s) / Creator(s):
;
Publisher / Repository:
NY Academy of Sciences
Date Published:
Journal Name:
Annals of the New York Academy of Sciences
ISSN:
0077-8923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Birds are agile flyers that can maintain flight at high angles of attack (AoA). Such maneuverability is partially enabled by the articulation of wing feathers. Coverts are one of the feather systems that has been observed to deploy simultaneously on both the upper and lower wing sides during flight. This study uses a feather-inspired flap system to investigate the effect of upper and lower side coverts on the aerodynamic forces and moments, as well as examine the interactions between both types of flaps. Results from wind tunnel experiments show that the covert-inspired flaps can modulate lift, drag, and pitching moment. Moreover, simultaneously deflecting covert-inspired flaps on the upper and lower sides of the airfoil exhibit larger force and moment modulation ranges compared to a single-sided flap alone. Data-driven models indicate significant interactions between the upper and lower side flaps, especially during the pre-stall regime for the lift and drag response. The findings from this study are also biologically relevant to the observations of covert feathers deployment during bird flight. Thus, the methods and results summarized here can be used to formulate new hypotheses about the coverts role in bird flight and develop a framework to design covert-inspired flow and flight control devices for engineered vehicles. 
    more » « less
  2. Of the more than 6,000 members of the most speciose avian clade, Passeriformes (perching birds), only the five species of dippers (Cinclidae, Cinclus) use their wings to swim underwater. Among nonpasserine wing-propelled divers (alcids, diving petrels, penguins, and plotopterids), convergent evolution of morphological characteristics related to this highly derived method of locomotion have been well-documented, suggesting that the demands of this behavior exert strong selective pressure. However, despite their unique anatomical attributes, dippers have been the focus of comparatively few studies and potential convergence between dippers and nonpasseriform wing-propelled divers has not been previously examined. In this study, a suite of characteristics that are shared among many wing-propelled diving birds were identified and the distribution of those characteristics across representatives of all clades of extant and extinct wing-propelled divers were evaluated to assess convergence. Putatively convergent characteristics were drawn from a relatively wide range of sources including osteology, myology, endocranial anatomy, integument, and ethology. Comparisons reveal that whereas nonpasseriform wing-propelled divers do in fact share some anatomical characteristics putatively associated with the biomechanics of underwater “flight”, dippers have evolved this highly derived method of locomotion without converging on the majority of concomitant changes observed in other taxa. Changes in the flight musculature and feathers, reduction of the keratin bounded external nares and an increase in subcutaneous fat are shared with other wing-propelled diving birds, but endocranial anatomy shows no significant shifts and osteological modifications are limited. Muscular and integumentary novelties may precede skeletal and neuroendocranial morphology in the acquisition of this novel locomotory mode, with implications for understanding potential biases in the fossil record of other such transitions. Thus, dippers represent an example of a highly derived and complex behavioral convergence that is not fully associated with the anatomical changes observed in other wing-propelled divers, perhaps owing to the relative recency of their divergence from nondiving passeriforms. 
    more » « less
  3. Abstract Animals swim in water, fly in air, or dive into water to find mates, chase prey, or escape from predators. Even though these locomotion modes are phenomenologically distinct, we can rationalize the underlying hydrodynamic forces using a unified fluid potential model. First, we review the previously known complex potential of a moving thin plate to describe circulation and pressure around the body. Then, the impact force in diving or thrust force in swimming and flying are evaluated from the potential flow model. For the impact force, we show that the slamming or impact force of various ellipsoid-shaped bodies of animals increases with animal weight, however, the impact pressure does not vary much. For fliers, birds and bats follow a linear correlation between thrust lift force and animal weight. For swimming animals, we present a scaling of swimming speed as a balance of thrust force with drag, which is verified with biological data. Under this framework, three distinct animal behaviors (i.e., swimming, flying, and diving) are similar in that a thin appendage displaces and pressurizes a fluid, but different in regards to the surroundings, being either fully immersed in a fluid or at a fluid interface. 
    more » « less
  4. Abstract Diving birds are regarded as a classic example of morphological convergence. Divers tend to have small wings extending from rotund bodies, requiring many volant species to fly with rapid wingbeats, and rendering others flightless. The high wing-loading of diving birds is frequently associated with the challenge of using forelimbs adapted for flight for locomotion in a “draggier” fluid, but this does not explain why species that rely exclusively on their feet to dive should have relatively small wings, as well. Therefore, others have hypothesized that ecological factors shared by wing-propelled and foot-propelled diving birds drive the evolution of high wing-loading. Following a reexamination of the aquatic habits of birds, we tested between hypotheses seeking to explain high wing-loading in divers using new comparative data and phylogenetically informed analyses. We found little evidence that wing-propelled diving selects for small wings, as wing-propelled and foot-propelled species share similar wing-loadings. Instead, our results suggest that selection to reduce buoyancy has driven high wing-loading in divers, offering insights for the development of bird-like aquatic robots. 
    more » « less
  5. Abstract Bird flight is often characterized by outstanding aerodynamic efficiency, agility and adaptivity in dynamic conditions. Feathers play an integral role in facilitating these aspects of performance, and the benefits feathers provide largely derive from their intricate and hierarchical structures. Although research has been attempted on developing membrane-type artificial feathers for bio-inspired aircraft and micro air vehicles (MAVs), fabricating anatomically accurate artificial feathers to fully exploit the advantages of feathers has not been achieved. Here, we present our 3D printed artificial feathers consisting of hierarchical vane structures with feature dimensions spanning from 10−2to 102mm, which have remarkable structural, mechanical and aerodynamic resemblance to natural feathers. The multi-step, multi-scale 3D printing process used in this work can provide scalability for the fabrication of artificial feathers tailored to the specific size requirements of aircraft wings. Moreover, we provide the printed feathers with embedded aerodynamic sensing ability through the integration of customized piezoresistive and piezoelectric transducers for strain and vibration measurements, respectively. Hence, the 3D printed feather transducers combine the aerodynamic advantages from the hierarchical feather structure design with additional aerodynamic sensing capabilities, which can be utilized in future biomechanical studies on birds and can contribute to advancements in high-performance adaptive MAVs. 
    more » « less