skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2002714

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study explores the impact of feathers on the hydrodynamic drag experienced by diving birds, which is critical to their foraging efficiency and survival. Employing a novel experimental approach, we analyzed the kinematics of both feathered and nonfeathered projectiles during their transition from air to water using high‐speed imaging and an onboard accelerometer. The drag coefficients were determined through two methods: a direct calculation from the acceleration data and a theoretical approach fitted to the observed velocity profiles. Our results indicate that feathers significantly increase the drag force during water entry, with feathered projectiles exhibiting approximately double the drag coefficient of their smooth counterparts. These findings provide new insights into the role of avian feather morphology in diving mechanics and have potential implications for the design of bioinspired aquatic vehicles in engineering. The study also discusses the biological implications of increased drag due to feathers and suggests that factors such as body shape might play a more critical role in the diving capabilities of birds than previously understood. 
    more » « less
  2. Abstract Fluid-mechanics research has focused primarily on droplets/aerosols being expelled from infected individuals and transmission of well-mixed aerosols indoors. However, aerosol collisions with susceptible hosts earlier in the spread, as well as aerosol deposition in the nasal cavity, have been relatively overlooked. In this paper, two simple fluid models are presented to gain a better understanding of the collision and deposition between a human and aerosols. The first model is based on the impact of turbulent diffusion coefficients and air flow in a room on the collisions between aerosols and humans. Infection rates can be determined based on factors such as air circulation and geometry as an infection zone expands from an infected host. The second model clarifies how aerosols of different sizes adhere to different parts of the respiratory tract. Based on the inhalation rate and the nasal cavity shape, the critical particle size and the deposition location can be determined. Our study offers simple fluid models to understand the effects of geometric factors and air flows on the aerosol transmission and deposition. 
    more » « less
  3. Abstract Fluid-structure interaction (FSI) studies the interaction between fluid and solid objects. It helps understand how fluid motion affects solid objects and vice versa. FSI research is important in engineering applications such as aerodynamics, hydrodynamics, and structural analysis. It has been used to design efficient systems such as ships, aircraft, and buildings. FSI in biological systems has gained interest in recent years for understanding how organisms interact with their fluidic environment. Our special issue features papers on various biological and bio-inspired FSI problems. Papers in this special issue cover topics ranging from flow physics to optimization and diagonistics. These papers offer new insights into natural systems and inspire the development of new technologies based on natural principles. 
    more » « less
  4. Abstract Animals swim in water, fly in air, or dive into water to find mates, chase prey, or escape from predators. Even though these locomotion modes are phenomenologically distinct, we can rationalize the underlying hydrodynamic forces using a unified fluid potential model. First, we review the previously known complex potential of a moving thin plate to describe circulation and pressure around the body. Then, the impact force in diving or thrust force in swimming and flying are evaluated from the potential flow model. For the impact force, we show that the slamming or impact force of various ellipsoid-shaped bodies of animals increases with animal weight, however, the impact pressure does not vary much. For fliers, birds and bats follow a linear correlation between thrust lift force and animal weight. For swimming animals, we present a scaling of swimming speed as a balance of thrust force with drag, which is verified with biological data. Under this framework, three distinct animal behaviors (i.e., swimming, flying, and diving) are similar in that a thin appendage displaces and pressurizes a fluid, but different in regards to the surroundings, being either fully immersed in a fluid or at a fluid interface. 
    more » « less
  5. Certain fox species plunge-dive into snow to catch prey (e.g., rodents), a hunting mechanism called mousing. Red and arctic foxes can dive into snow at speeds ranging between 2 and 4 m/s. Such mousing behavior is facilitated by a slim, narrow facial structure. Here, we investigate how foxes dive into snow efficiently by studying the role of skull morphology on impact forces it experiences. In this study, we reproduce the mousing behavior in the lab using three-dimensional (3D) printed fox skulls dropped into fresh snow to quantify the dynamic force of impact. Impact force into snow is modeled using hydrodynamic added mass during the initial impact phase. This approach is based on two key facts: the added mass effect in granular media at high Reynolds numbers and the characteristics of snow as a granular medium. Our results show that the curvature of the snout plays a critical role in determining the impact force, with an inverse relationship. A sharper skull leads to a lower average impact force, which allows foxes to dive head-first into the snow with minimal tissue damage. 
    more » « less
  6. We aim to develop a floor-cleaning design by exploiting oscillating bubbles combined with ambient pressure waves to clean various surfaces. Previous studies of this method in lab settings have proven its efficacy, but practical applications, especially concerning real-world conditions like dirt surfaces, remain largely unprobed. Our findings indicate that, excluding a configuration with a heavy mass bottom transducer, all tested configurations achieved approximately 60–70% cleaning performance. A slight improvement in cleaning performance was observed with the introduction of microbubbles, although it was within the error margin. Particularly noteworthy is the substantial reduction in water consumption in configurations with a water pocket, decreasing from 280 mL to a mere 3 mL, marking a significant step toward more environmentally sustainable cleaning practices, such as reduced water usage. This research provides implications for real-world cleaning applications, promising an eco-friendly and efficient cleaning alternative that reduces water usage and handles a variety of materials without causing damage. 
    more » « less
  7. Water stuck in the ear is a common problem during showering, swimming or other water activities. Having water trapped in the ear canal for a long time can lead to ear infections and possibly result in hearing loss. A common strategy for emptying water from the ear canal is to shake the head, where high acceleration helps remove the water. In this present study, we rationalize the underlying mechanism of water ejection/removal from the ear canal by performing experiments and developing a stability theory. From the experiments, we measure the critical acceleration to remove the trapped water inside different sizes of canals. Our theoretical model, modified from the Rayleigh–Taylor instability, can explain the critical acceleration observed in experiments, which strongly depends on the radius of the ear canal. The resulting critical acceleration tends to increase, especially in smaller ear canals, which indicates that shaking heads for water removal can be more laborious and potentially threatening to children due to their small size of the ear canal compared with adults. 
    more » « less
  8. This study investigates how humans and animals are injured due to diving. 
    more » « less