skip to main content


This content will become publicly available on July 4, 2025

Title: Impact of a Novel Nickel-Based Catalyst and Phenyl-Acrylate-Based Anion-Exchange Membrane in a Direct Urea Fuel Cell
Award ID(s):
1947936
PAR ID:
10520982
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Energy & Fuels
Volume:
38
Issue:
13
ISSN:
0887-0624
Page Range / eLocation ID:
12274 to 12281
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations. 
    more » « less
  2. Hemoglobin is a biomarker of interest for the diagnosis and prognosis of various diseases such as anemia, sickle cell disease, and thalassemia. In this paper, we present a disposable device that has the potential of being used in a setting for accurately quantifying hemoglobin levels in whole blood based on colorimetric analysis using a smartphone camera. Our biosensor employs a disposable microfluidic chip which is made using medical-grade tapes and filter paper on a glass slide in conjunction with a custom-made PolyDimethylSiloaxane (PDMS) micropump for enhancing capillary flow. Once the blood flows through the device, the glass slide is imaged using a smartphone equipped with a custom 3D printed attachment. The attachment has a Light Emitting Diode (LED) that functions as an independent light source to reduce the noise caused by background illumination and external light sources. We then use the RGB values obtained from the image to quantify the hemoglobin levels. We demonstrated the capability of our device for quantifying hemoglobin in Bovine Hemoglobin Powder, Frozen Beef Blood, and human blood. We present a logarithmic model that specifies the relationship between the Red channel of the RGB values and Hemoglobin concentration. 
    more » « less
  3. We consider the community search problem defined upon a large graph G: given a query vertex q in G, to find as output all the densely connected subgraphs of G, each of which contains the query v. As an online, query-dependent variant of the well-known community detection problem, community search enables personalized community discovery that has found widely varying applications in real-world, large-scale graphs. In this paper, we study the community search problem in the truss-based model aimed at discovering all dense and cohesive k-truss communities to which the query vertex q belongs. We introduce a novel equivalence relation, k-truss equivalence, to model the intrinsic density and cohesiveness of edges in k-truss communities. Consequently, all the edges of G can be partitioned to a series of k-truss equivalence classes that constitute a space-efficient, truss-preserving index structure, EquiTruss. Community search can be henceforth addressed directly upon EquiTruss without repeated, time-demanding accesses to the original graph, G, which proves to be theoretically optimal. In addition, EquiTruss can be efficiently updated in a dynamic fashion when G evolves with edge insertion and deletion. Experimental studies in real-world, large-scale graphs validate the efficiency and effectiveness of EquiTruss, which has achieved at least an order of magnitude speedup in community search over the state-of-the-art method, TCP-Index. 
    more » « less