skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials
Abstract. Dams have proliferated along the Mekong, spurred by energy demands from economic development and capital from private companies. Swift dam evolution has rendered many databases outdated, in which mismatches arise from differing compilation methods. Without a comprehensive database, up-to-date spatial assessment of dam growth is unavailable. Looking at future development, hydropower potential specifically within the Mekong remains to be systematically evaluated. In this paper, we offer (1) an open-access and unified database of 1055 dams, (2) a spatiotemporal analysis of dams on a sub-basin and country level from the 1980s to the post-2020s, and (3) a grid-based assessment of the theoretical basin-wide hydropower potential using present-day discharge from the CaMa-Flood model (2011–2015, 0.05°) and future discharge from the WaterGAP2 model used for ISIMIP2b (2021–2040, 0.5°). The dam count of 1055 is more than twice the largest existing database, with 608 hydropower dams generating a boom in hydropower capacity from 1242 MW in the 1980s to 69 199 MW post-2020s. While China had the largest capacity increase from the 2000s to the 2010s (+16 854 MW), Laos has the most planned dams and the highest projected growth post-2020s (+18 223 MW). Based on present-day discharge, we estimate a basin-wide hydropower potential of 1 334 683 MW, where Laos is the highest at 514 887 MW. Based on future discharge modeled with climate change, hydropower potential could grow to over 2 000 000 MW. Laos and China are the highest at around 900 000 MW each, together forming over 80 % of the total potential. Our database facilitates research on dam-induced hydrological and ecological alterations, while spatiotemporal analysis of hydropower capacity could illuminate the complex transboundary electricity trade. Through both spatiotemporal and hydropower potential evaluation, we address the current and future vulnerability of countries to dam construction, highlighting the need for better planning and management in the future hydropower hotspot Laos. The Mekong dam database is publicly available at https://doi.org/10.21979/N9/ACZIJN (Ang et al., 2023).  more » « less
Award ID(s):
1752729
PAR ID:
10520990
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Earth System Science Data
Date Published:
Journal Name:
Earth System Science Data
Volume:
16
Issue:
3
ISSN:
1866-3516
Page Range / eLocation ID:
1209 to 1228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In Mekong riparian countries, hydropower development provides energy, but also threatens biodiversity, ecosystems, food security, and an unparalleled freshwater fishery. The Sekong, Sesan, and Srepok Rivers (3S Basin) are major tributaries to the Lower Mekong River (LMB), making up 10% of the Mekong watershed but supporting nearly 40% of the fish species of the LMB. Forty-five dams have been built, are under construction, or are planned in the 3S Basin. We completed a meta-analysis of aquatic and riparian environmental losses from current, planned, and proposed hydropower dams in the 3S and LMB using 46 papers and reports from the past three decades. Proposed mainstem Stung Treng and Sambor dams were not included in our analysis because Cambodia recently announced a moratorium on mainstem Mekong River dams. More than 50% of studies evaluated hydrologic change from dam development, 33% quantified sediment alteration, and 30% estimated fish production changes. Freshwater fish diversity, non-fish species, primary production, trophic ecology, and nutrient loading objectives were less commonly studied. We visualized human and environmental tradeoffs of 3S dams from the reviewed papers. Overall, Lower Sesan 2, the proposed Sekong Dam, and planned Lower Srepok 3A and Lower Sesan 3 have considerable environmental impacts. Tradeoff analyses should include environmental objectives by representing organisms, habitats, and ecosystems to quantify environmental costs of dam development and maintain the biodiversity and extraordinary freshwater fishery of the LMB. 
    more » « less
  2. Hydropower has been the leading source of renewable energy across the world, accounting for up to 71% of this supply as of 2016. This capacity was built up in North America and Europe between 1920 and 1970 when thousands of dams were built. Big dams stopped being built in developed nations, because the best sites for dams were already developed and environmental and social concerns made the costs unacceptable. Nowadays, more dams are being removed in North America and Europe than are being built. The hydropower industry moved to building dams in the developing world and since the 1970s, began to build even larger hydropower dams along the Mekong River Basin, the Amazon River Basin, and the Congo River Basin. The same problems are being repeated: disrupting river ecology, deforestation, losing aquatic and terrestrial biodiversity, releasing substantial greenhouse gases, displacing thousands of people, and altering people’s livelihoods plus affecting the food systems, water quality, and agriculture near them. This paper studies the proliferation of large dams in developing countries and the importance of incorporating climate change into considerations of whether to build a dam along with some of the governance and compensation challenges. We also examine the overestimation of benefits and underestimation of costs along with changes that are needed to address the legitimate social and environmental concerns of people living in areas where dams are planned. Finally, we propose innovative solutions that can move hydropower toward sustainable practices together with solar, wind, and other renewable sources. 
    more » « less
  3. Abstract Tonle Sap Lake in Cambodia is arguably the world's most productive freshwater ecosystems, as well as the dominant source of animal protein for the country. The rapid rise of hydropower schemes, deforestation, land development and climate change impacts in the Mekong River Basin, however, now represent serious concerns in regard to Tonle Sap Lake's ecological health and its role in future food security. To this end, the present study identifies significant recent warming of lake temperature and discusses how each of these anthropogenic perturbations in Tonle Sap's floodplain and the Mekong River Basin may be influencing this trend. The lake's dry season monthly average temperature increased by 0.03°C/year between 1988 and 2018, being largely in synchrony with warming trends of the local air temperature and upstream rivers. The impacts of deforestation and agriculture development in the lake's floodplain also exhibited a high correlation with an increased number of warm days observed in the lake, particularly in its southeast region (agricultureR2 = .61; deforestationR2 = .39). A total of 79 dams, resulting in 72 km3of volumetric water capacity, were constructed between 2003 and 2018 in the Mekong River Basin. This dam development coincided with a decreasing trend in the number of dry season warm days per year in the lower Mekong River, while Tonle Sap Lake's number of dry season warm days continued to increase during this same period. The present study revealed that Tonle Sap Lake's temperature trends are highly influenced by temperature trends in the local climate, agriculture development and deforestation of the lake's watershed. Although there were no noticeable impacts observed from upstream dam development in the Mekong River Basin, local‐to‐regional agricultural and land management of the lake's watershed appear to be effective strategies for maintaining a stable thermal regime in the lake in order to facilitate maximum ecosystem health. 
    more » « less
  4. Abstract Hydropower dams have received increased global attention due to their detrimental socioenvironmental ramifications. Such attention has led to an increase in studies on the impacts of reservoir operation on river flow; however, a holistic understanding of the compounded effects of hydropower dams on different hydrological characteristics is lacking, especially for large river basins such as the Amazon where hydropower development is on the rise. Here, we mechanistically quantify the historical impacts of existing dams and the potential impacts of the collective operation of existing and planned dams on a basin‐wide scale in the Amazon for the 1981–2019 period. We build on the recently developed high‐resolution (3‐arcmin; ∼5 km) river‐floodplain‐reservoir model, the CaMa‐Flood‐Dam, which is enhanced to realistically simulate hydropower dam operation considering maximized power production. Flood simulations are further downscaled to 3 arc‐seconds (∼90 m) resolution to investigate the impacts of dams on fine‐scale flood dynamics across the basin. Results indicate that existing dams have substantially altered downstream river flow and flooding patterns across the Amazon River basin. Specifically, large dams in the Amazonian subbasins, including the Xingu, Madeira, and Tocantins, have altered downstream river flow amplitude by up to 3 orders of magnitude. Further, the collective operation of existing and planned dams could increasingly alter river flow patterns, causing ∼10% decrease in flood duration in many parts of the Amazon mainstem. Our results provide quantitative evidence on the severity of the hydrologic impacts of large hydropower dams and have important implications for sustainable hydropower operation and development in the Amazon and worldwide. 
    more » « less
  5. Abstract Nations in the global South have developed hydropower projects at a rapid pace in recent decades, most notably Brazil and China. These projects have long‐documented impacts on social and ecological systems, yet the implications of hydropower for human well‐being and health are not fully understood. In this paper, we examine eight Brazilian Amazon communities in the Madeira river basin, near the Jirau and Santo Antônio dams (sample size: 536 households). We evaluate how impacts on community resources, social capital, and the experience of resettlement influence self‐rated health in these communities. Results suggest that the dams strained community resources and social capital, which were associated with reductions in self‐rated health. In particular, cognitive social capital (i.e., trust) is lower after the dams' construction. The effect of resettlement and compensation is more nuanced and qualified. This work suggests that hydropower projects have broad deleterious impacts on well‐being and health of human populations in hosting regions and that better directed efforts are required on the part of dam developers to reduce these negative outcomes. 
    more » « less