null
(Ed.)
Many tropical regions are experiencing an intensification of drought, with increasing severity and frequency of the events. However, the forest ecosystem response to these changes is still highly uncertain. It has been hypothesized that on short time scales (from diurnal to seasonal), tropical forests respond to water stress by physiological controls, such as stomata regulation and phenological adjustment, to control increasing atmospheric water demand and cope with reduced water supply. However, the interactions among biological processes and co-varying environmental factors that determine the ecosystem-level fluxes are still unclear. Furthermore, climate variability at longer time scales, such as that generated by ENSO, produces less predictable effects, which might vary among forests and ecoregions within the tropics. This study will present some emerging patterns of response to water stress from five years of observations of water, carbon, and energy fluxes on the seasonal tropical forest in Barro Colorado Island (Panama), including an increase in productivity during the 2015 El Niño. We will show how these responses will depend critically on the combination of environmental factors experienced by the forest along the seasonal cycle. These results suggest a critical role of plant hydraulics in mediating the response to water stress on a broad range of temporal scales, including during the wet seasons when water availability is not a limiting factor. The study also found that the response to large-scale drought events is contingent and might produce a different outcome in different tropical forest areas.
more »
« less