skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patterns recovered in phylogenomic analysis of Candida auris and close relatives implicate broad environmental flexibility in Candida/Clavispora clade yeasts
Fungal pathogens commonly originate from benign or non-pathogenic strains living in the natural environment. The recently emerged human pathogen,Candida auris,is one example of a fungus believed to have originated in the environment and recently transitioned into a clinical setting. To date, however, there is limited evidence about the origins of this species in the natural environment and when it began associating with humans. One approach to overcome this gap is to reconstruct phylogenetic relationships between (1) strains isolated from clinical and non-clinical environments and (2) between species known to cause disease in humans and benign environmental saprobes.C. aurisbelongs to theCandida/Clavisporaclade, a diverse group of 45 yeast species including human pathogens and environmental saprobes. We present a phylogenomic analysis of theCandida/Clavisporaclade aimed at understanding the ecological breadth and evolutionary relationships between an expanded sample of environmentally and clinically isolated yeasts. To build a robust framework for investigating these relationships, we developed a whole-genome sequence dataset of 108 isolates representing 18 species, including four newly sequenced species and 18 environmentally isolated strains. Our phylogeny, based on 619 orthologous genes, shows environmentally isolated species and strains interspersed with clinically isolated counterparts, suggesting that there have been many transitions between humans and the natural environment in this clade. Our findings highlight the breadth of environments these yeasts inhabit and imply that many clinically isolated yeasts in this clade could just as easily live outside the human body in diverse natural environments and vice versa.  more » « less
Award ID(s):
1553114
PAR ID:
10521057
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Microbiology Society
Date Published:
Journal Name:
Microbial Genomics
Volume:
10
Issue:
4
ISSN:
2057-5858
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Candida aurisis an emerging fungal pathogen that is thermotolerant and often resistant to standard antifungal treatments. To trace its evolutionary history, the Sanyal lab conducted a comparative genomic study focusing on the positions of centromeres inC. aurisand eight other species from theClavispora/Candidaclade of yeasts (A. 
    more » « less
  2. Mitchell, Aaron P. (Ed.)
    ABSTRACT The World Health Organization recently published the first list of priority fungal pathogens highlighting multipleCandidaspecies, includingCandida glabrata,Candida albicans, andCandida auris. However, prior studies in these pathogens have been mainly limited to the use of two drug resistance cassettes,NatMXandHphMX, limiting genetic manipulation capabilities in prototrophic laboratory strains and clinical isolates. In this study, we expanded the toolkit forC. glabrata,C. auris, andC. albicansto includeKanMXandBleMXwhen coupled with anin vitroassembled CRISPR-Cas9 ribonucleoprotein (RNP)-based system. Repurposing these drug resistance cassettes forCandida, we were able to make single gene deletions, sequential and simultaneous double gene deletions, epitope tags, and rescue constructs. We applied these drug resistance cassettes to interrogate the ergosterol pathway, a critical pathway for both the azole and polyene antifungal drug classes. Using our approach, we determined for the first time that the deletion ofERG3inC. glabrata,C. auris,andC. albicansprototrophic strains results in azole drug resistance, which further supports the conservation of the Erg3-dependent toxic sterol model. Furthermore, we show that anERG5deletion inC. glabratais azole susceptible at subinhibitory concentrations, suggesting that Erg5 could act as an azole buffer for Erg11. Finally, we identified a synthetic growth defect when bothERG3andERG5are deleted inC. glabrata,which suggests the possibility of another toxic sterol impacting growth. Overall, we have expanded the genetic tools available to interrogate complex pathways in prototrophic strains and clinical isolates. IMPORTANCEThe increasing problem of drug resistance and emerging pathogens is an urgent global health problem that necessitates the development and expansion of tools for studying fungal drug resistance and pathogenesis. Prior studies inCandida glabrata,Candida auris, andCandida albicanshave been mainly limited to the use ofNatMX/SAT1andHphMX/CaHygfor genetic manipulation in prototrophic strains and clinical isolates. In this study, we demonstrated thatNatMX/SAT1, HphMX, KanMX,and/orBleMXdrug resistance cassettes when coupled with a CRISPR-ribonucleoprotein (RNP)-based system can be efficiently utilized for deleting or modifying genes in the ergosterol pathway ofC. glabrata,C. auris, andC. albicans. Moreover, the utility of these tools has provided new insights intoERGgenes and their relationship to azole resistance inCandida. Overall, we have expanded the toolkit forCandidapathogens to increase the versatility of genetically modifying complex pathways involved in drug resistance and pathogenesis. 
    more » « less
  3. ABSTRACT Compared to other species of Candida yeasts, the growth of Candida glabrata is inhibited by many different strains of Saccharomyces killer yeasts. The ionophoric K1 and K2 killer toxins are broadly inhibitory to all clinical isolates of C. glabrata from patients with recurrent vulvovaginal candidiasis, despite high levels of resistance to clinically relevant antifungal therapeutics. 
    more » « less
  4. Mitchell, Aaron P (Ed.)
    ABSTRACT Fungi were some of the earliest organismal systems used to explore mutational processes and its phenotypic consequences on members of a species. Yeasts that cause significant human disease were quickly incorporated into these investigations to define the genetic and phenotypic drivers of virulence. AmongCandidaspecies,Candida albicanshas emerged as a model for studying genomic processes of evolution because of its clinical relevance, relatively small genome, and ability to tolerate complex chromosomal changes. Here, we describe major recent findings that used evolution of strains from defined genetic backgrounds to delineate mutational and adaptative processes and include how nascent exploration into naturally occurring variation is contributing to these conceptual frameworks. Ultimately, efforts to discern adaptive mechanisms used byC. albicanswill continue to divulge new biology and can better inform treatment regimens for the increasing prevalence of fungal disease. 
    more » « less
  5. Goldman, Gustavo H (Ed.)
    ABSTRACT Infections caused by the emerging pathogenic yeastClavispora (Candida) lusitaniaecan be difficult to manage due to multi-drug resistance. Resistance to the frontline antifungal fluconazole (FLZ) inCandidaspp. is commonly acquired through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. These activated Mrr1 variants enhance FLZ efflux via upregulation of the multi-drug transporter geneMDR1. Recently, it was reported that, unlike in the well-studiedCandida albicansspecies,C. lusitaniaeandCandida parapsilosiswith activated Mrr1 also have high expression ofCDR1, which encodes another multi-drug transporter with overlapping but distinct transported substrate profiles and Cdr1-dependent FLZ resistance. To better understand the mechanisms of Mrr1 regulation ofMDR1andCDR1, and other co-regulated genes, we performed Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analysis of Mrr1 binding sites. Mrr1 bound the promoter regions ofMDR1andCDR1, as well asFLU1, which encodes another transporter capable of FLZ efflux. Mdr1 and Cdr1 independently contributed to the decreased susceptibility of theMRR1GOFstrains against diverse clinical azoles and other antifungals, including 5-flucytosine. A consensus motif, CGGAGWTAR, enriched in Mrr1-boundC. lusitaniaeDNA was also conserved upstream ofMDR1andCDR1across species, includingC. albicans. CUT&RUN and RNA-seq data were used to define the Mrr1 regulon, which includes genes involved in transport, stress response, and metabolism. Activated and inducible Mrr1 bound similar regions in the promoters of Mrr1 regulon genes. Our studies provide new evolutionary insights into the coordinated regulation of multi-drug transporters and potential mechanism(s) that aid secondary resistance acquisition in emergingCandida. IMPORTANCEUnderstanding antifungal resistance in emergingCandidapathogens is essential to managing treatment failures and guiding the development of new therapeutic strategies. Like otherCandidaspecies, the environmental opportunistic fungal pathogenClavispora(Candida)lusitaniaecan acquire resistance to the antifungal fluconazole by overexpression of the multi-drug efflux pump Mdr1 through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. Here, we show thatC. lusitaniaeMrr1 also directly regulatesCDR1, another major multi-drug transporter gene, along withMDR1. In strains with activated Mrr1, upregulation ofMDR1andCDR1protects against diverse antifungals, potentially aiding the rise of other resistance mutations. Mrr1 also regulates several stress response and metabolism genes, thereby providing new perspectives into the physiology of drug-resistant strains. The identification of an Mrr1 binding motif that is conserved across strains and species will advance future efforts to understand multi-drug resistance acrossCandidaspecies. 
    more » « less