Abstract Recent developments such as multi-harmonic Atomic Force Microscopy (AFM) techniques have enabled fast, quantitative mapping of nanomechanical properties of living cells. Due to their high spatiotemporal resolution, these methods provide new insights into changes of mechanical properties of subcellular structures due to disease or drug response. Here, we propose three new improvements to significantly improve the resolution, identification, and mechanical property quantification of sub-cellular and sub-nuclear structures using multi-harmonic AFM on living cells. First, microcantilever tips are streamlined using long-carbon tips to minimize long-range hydrodynamic interactions with the cell surface, to enhance the spatial resolution of nanomechanical maps and minimize hydrodynamic artifacts. Second, simultaneous Spinning Disk Confocal Microscopy (SDC) with live-cell fluorescent markers enables the unambiguous correlation between observed heterogeneities in nanomechanical maps with subcellular structures. Third, computational approaches are then used to estimate the mechanical properties of sub-nuclear structures. Results are demonstrated on living NIH 3T3 fibroblasts and breast cancer MDA-MB-231 cells, where properties of nucleoli, a deep intracellular structure, were assessed. The integrated approach opens the door to study the mechanobiology of sub-cellular structures during disease or drug response.
more »
« less
This content will become publicly available on December 1, 2025
Brillouin microscopy monitors rapid responses in subcellular compartments
Abstract Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.
more »
« less
- Award ID(s):
- 2013771
- PAR ID:
- 10521114
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- PhotoniX
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.more » « less
-
Abstract Countless biophysical studies have sought distinct markers in the cellular mechanical response that could be linked to morphogenesis, homeostasis, and disease. Here, an iterative-fitting methodology visualizes the time-dependent viscoelastic behavior of human skin cells under physiologically relevant conditions. Past investigations often involved parameterizing elastic relationships and assuming purely Hertzian contact mechanics, which fails to properly account for the rich temporal information available. We demonstrate the performance superiority of the proposed iterative viscoelastic characterization method over standard open-search approaches. Our viscoelastic measurements revealed that 2D adherent metastatic melanoma cells exhibit reduced elasticity compared to their normal counterparts—melanocytes and fibroblasts, and are significantly less viscous than fibroblasts over timescales spanning three orders of magnitude. The measured loss angle indicates clear differential viscoelastic responses across multiple timescales between the measured cells. This method provides insight into the complex viscoelastic behavior of metastatic melanoma cells relevant to better understanding cancer metastasis and aggression.more » « less
-
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.more » « less
-
Abstract BackgroundStalk lodging (the premature breaking of plant stalks or stems prior to harvest) is a persistent agricultural problem that causes billions of dollars in lost yield every year. Three-point bending tests, and rind puncture tests are common biomechanical measurements utilized to investigate crops susceptibility to lodging. However, the effect of testing rate on these biomechanical measurements is not well understood. In general, biological specimens (including plant stems) are well known to exhibit viscoelastic mechanical properties, thus their mechanical response is dependent upon the rate at which they are deflected. However, there is very little information in the literature regarding the effect of testing rate (aka displacement rate) on flexural stiffness, bending strength and rind puncture measurements of plant stems. ResultsFully mature and senesced maize stems and wheat stems were tested in three-point bending at various rates. Maize stems were also subjected to rind penetration tests at various rates. Testing rate had a small effect on flexural stiffness and bending strength calculations obtained from three-point bending tests. Rind puncture measurements exhibited strong rate dependent effects. As puncture rate increased, puncture force decreased. This was unexpected as viscoelastic materials typically show an increase in resistive force when rate is increased. ConclusionsTesting rate influenced three-point bending test results and rind puncture measurements of fully mature and dry plant stems. In green stems these effects are expected to be even larger. When conducting biomechanical tests of plant stems it is important to utilize consistent span lengths and displacement rates within a study. Ideally samples should be tested at a rate similar to what they would experience in-vivo.more » « less