skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Down‐set thresholds
Abstract We elucidate the relationship between the threshold and the expectation‐threshold of a down‐set. Qualitatively, our main result demonstrates that there exist down‐sets with polynomial gaps between their thresholds and expectation‐thresholds; in particular, the logarithmic gap predictions of Kahn–Kalai and Talagrand (recently proved by Park–Pham and Frankston–Kahn–Narayanan–Park) about up‐sets do not apply to down‐sets. Quantitatively, we show that any collection of graphs on that covers the family of all triangle‐free graphs on satisfies the inequality for some universal , and this is essentially best‐possible.  more » « less
Award ID(s):
2103154
PAR ID:
10419745
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
63
Issue:
2
ISSN:
1042-9832
Page Range / eLocation ID:
p. 442-456
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT A key set‐theoretic “spread” lemma has been central to two recent celebrated results in combinatorics: the recent improvements on the sunflower conjecture by Alweiss, Lovett, Wu, and Zhang; and the proof of the fractional Kahn–Kalai conjecture by Frankston, Kahn, Narayanan, and Park. In this work, we present a new proof of the spread lemma, that—perhaps surprisingly—takes advantage of an explicit recasting of the proof in the language of Bayesian inference. We show that from this viewpoint the reasoning proceeds in a straightforward and principled probabilistic manner, leading to a truncated second moment calculation which concludes the proof. 
    more » « less
  2. We survey the current state of affairs in the study of thresholds and sharp thresholds in random structures on the occasion of the recent proof of the Kahn–Kalai conjecture by Park and Pham and the fairly recent proof of the satisfiability conjecture for large k by Ding, Sly, and Sun. Random discrete structures appear as fundamental objects of study in many scientific and mathematical fields including statistical physics, combinatorics, algorithms and complexity, social choice theory, coding theory, and statistics. While the models and properties of interest in these fields vary widely, much progress has been made through the development of general tools applicable to large families of models and properties all at once. Historically, these tools originated to solve or make progress on specific difficult conjectures in the areas mentioned above. We will survey recent progress on some of these hard problems and describe some challenges for the future. This survey was prepared in conjunction with a talk for the Current Events Bulletin at the 2024 Joint Mathematics Meetings (JMM) in San Francisco, California. 
    more » « less
  3. Many large-scale recommender systems consist of two stages. The first stage efficiently screens the complete pool of items for a small subset of promising candidates, from which the second-stage model curates the final recommendations. In this paper, we investigate how to ensure group fairness to the items in this two-stage architecture. In particular, we find that existing first-stage recommenders might select an irrecoverably unfair set of candidates such that there is no hope for the second-stage recommender to deliver fair recommendations. To this end, motivated by recent advances in uncertainty quantification, we propose two threshold-policy selection rules that can provide distribution-free and finite-sample guarantees on fairness in first-stage recommenders. More concretely, given any relevance model of queries and items and a point-wise lower confidence bound on the expected number of relevant items for each threshold-policy, the two rules find near-optimal sets of candidates that contain enough relevant items in expectation from each group of items. To instantiate the rules, we demonstrate how to derive such confidence bounds from potentially partial and biased user feedback data, which are abundant in many large-scale recommender systems. In addition, we provide both finite-sample and asymptotic analyses of how close the two threshold selection rules are to the optimal thresholds. Beyond this theoretical analysis, we show empirically that these two rules can consistently select enough relevant items from each group while minimizing the size of the candidate sets for a wide range of settings. 
    more » « less
  4. Abstract We give polynomial time algorithms for the seminal results of Kahn, who showed that the Goldberg–Seymour and list‐coloring conjectures for (list‐)edge coloring multigraphs hold asymptotically. Kahn's arguments are based on the probabilistic method and are non‐constructive. Our key insight is that we can combine sophisticated techniques due to Achlioptas, Iliopoulos, and Kolmogorov for the analysis of local search algorithms with correlation decay properties of the probability spaces on matchings used by Kahn in order to construct efficient edge‐coloring algorithms. 
    more » « less
  5. Abstract We address a special case of a conjecture of M. Talagrand relating two notions of “threshold” for an increasing family of subsets of a finite setV. The full conjecture implies equivalence of the “Fractional Expectation‐Threshold Conjecture,” due to Talagrand and recently proved by the authors and B. Narayanan, and the (stronger) “Expectation‐Threshold Conjecture” of the second author and G. Kalai. The conjecture under discussion here says there is a fixedLsuch that if, for a given , admits withand(a.k.a.  isweakly p‐small), then admits such a taking values in ( is‐small). Talagrand showed this when is supported on singletons and suggested, as a more challenging test case, proving it when is supported on pairs. The present work provides such a proof. 
    more » « less