skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deconfined quantum criticality of nodal d -wave superconductivity, Néel order, and charge order on the square lattice at half-filling
We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are chosen so that they match with those of the spinons of the π -flux spin liquid. Global symmetries of all gauge-invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average background π -flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays several confining/Higgs phases: a nodal d -wave superconductor, and states with Néel, valence-bond solid, charge, or staggered current orders. There are also a number of quantum phase transitions between these phases that are very likely described by ( 2 + 1 ) -dimensional deconfined conformal gauge theories, and we present large flavor expansions for such theories. These include the phenomenologically attractive case of a transition between a conventional insulator with a charge gap and Néel order, and a conventional d -wave superconductor with gapless Bogoliubov quasiparticles at four nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a bicritical point at the junction of Néel, valence bond solid (Kekulé), and Dirac semimetal phases. Published by the American Physical Society2024  more » « less
Award ID(s):
2245246
PAR ID:
10521342
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
3
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the 1 + 1 D ultralocal lattice Hamiltonian for staggered fermions with a finite-dimensional Hilbert space, there are two conserved, integer-valued charges that flow in the continuum limit to the vector and axial charges of a massless Dirac fermion with a perturbative anomaly. Each of the two lattice charges generates an ordinary U(1) global symmetry that acts locally on operators and can be gauged individually. Interestingly, they do not commute on a finite lattice and generate the Onsager algebra, but their commutator goes to zero in the continuum limit. The chiral anomaly is matched by this non-Abelian algebra, which is consistent with the Nielsen-Ninomiya theorem. We further prove that the presence of these two conserved lattice charges forces the low-energy phase to be gapless, reminiscent of the consequence from perturbative anomalies of continuous global symmetries in continuum field theory. Upon bosonization, these two charges lead to two exact U(1) symmetries in the XX model that flow to the momentum and winding symmetries in the free boson conformal field theory. Published by the American Physical Society2025 
    more » « less
  2. The quantum numbers of monopoles in R 3 in the presence of massless fermions have been analyzed using a uniform flux background in S 2 × R coupled to fermions. An analogous study in T 2 × R is performed by studying the discrete symmetries of the Dirac Hamiltonian in the presence of a static uniform field on T 2 with a total flux of Q in the continuum. The degenerate ground states are classified based on their transformation properties under π 2 rotations of T 2 that leave the background field invariant. We find that the lattice analysis with overlap fermions exactly reproduces the transformation properties of the single-particle zero modes in the continuum. Whereas the transformation properties of the single-particle negative energy states can be studied in the continuum and the lattice, we are also able to study the transformation properties and the particle number (charge) of the many-body ground state on a finite lattice, and we show that the contributions from the fully filled single-particle states cannot be ignored. Published by the American Physical Society2025 
    more » « less
  3. This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into b b ¯ , leading to a reconstructed final state with at least three energetic b -jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 ( 139 ) fb 1 of s = 13 TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  4. PRD (Ed.)
    A search for heavy neutral gauge bosons ( Z ) decaying into a pair of tau leptons is performed in proton-proton collisions at s = 13 TeV at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of 138 fb 1 . The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the Z production cross section and its branching fraction to tau lepton pairs for a range of Z boson masses. For a narrow resonance in the sequential standard model scenario, a Z boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
  5. A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 ± 0.12 GeV , and an upper limit on the width Γ H < 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 1.5 + 2.0 MeV , in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less