Biofuels produced via thermochemical conversions of waste biomass could be sustainable alternatives to fossil fuels but currently require costly downstream upgrading to be used in existing infrastructure. In this work, we explore how a low-cost, abundant clay mineral, bentonite, could serve as an in situ heterogeneous catalyst for two different thermochemical conversion processes: pyrolysis and hydrothermal carbonization (HTC). Avocado pits were combined with 20 wt% bentonite clay and were pyrolyzed at 600 °C and hydrothermally carbonized at 250 °C, commonly used conditions across the literature. During pyrolysis, bentonite clay promoted Diels–Alder reactions that transformed furans to aromatic compounds, which decreased the bio-oil oxygen content and produced a fuel closer to being suitable for existing infrastructure. The HTC bio-oil without the clay catalyst contained 100% furans, mainly 5-methylfurfural, but in the presence of the clay, approximately 25% of the bio-oil was transformed to 2-methyl-2-cyclopentenone, thereby adding two hydrogen atoms and removing one oxygen. The use of clay in both processes decreased the relative oxygen content of the bio-oils. Proximate analysis of the resulting chars showed an increase in fixed carbon (FC) and a decrease in volatile matter (VM) with clay inclusion. By containing more FC, the HTC-derived char may be more stable than pyrolysis-derived char for environmental applications. The addition of bentonite clay to both processes did not produce significantly different bio-oil yields, such that by adding a clay catalyst, a more valuable bio-oil was produced without reducing the amount of bio-oil recovered.
more »
« less
Effects of Carrier Gas Flow Rate and ZSM-5 Catalyst on Yields and Quality of Bio-oil from Pyrolysis of Lignocellulosic Biomass Using a Fixed-bed Reactor
This experimental process demonstrates the potential of advancing the technology of lignocellulosic-based biofuels. Maximized bio-oil yields and gasoline range aromatics were obtained from the pyrolysis of switchgrass biomass in a medium-scale fixed bed reactor (48.2 L). The reaction’s final temperature was set at 520ºC while the carrier gas flow rate was varied at (50 L min-1, 75 L min-1 and 100 L min-1) both without and with the use of the ZSM-5 catalyst. Bio-oil yields of 18.2%, 26.9%, and 34.1% were generated without catalyst. Using the ZSM-5 catalyst, bio-oil yields of 20.2%, 41.5%, and 47.7% were generated. At 75 L min-1, 9.6% gasoline range organics (GROs) were detected without the catalyst and 12.4% aromatics were detected in the experiment with ZSM-5 catalyst. At 100 L min-1, 10.5%, and 13.7% of aromatics were detected without and with ZSM-5 catalyst respectively. At 75 L min-1, 14.5% of oxygen content recorded without catalyst, and 5.6% with ZSM-5 catalyst. At 100 L min-1, oxygen content was 10.4% without catalyst, and 8.6 % with ZSM-5 catalyst. The effects of carrier gas flow rate variations and a ZSM-5 catalyst on bio-oil yields and quality were experimentally demonstrated using a single-step thermochemical conversion process. This is a major development towards improving U.S energy security and achieving global CO2 emissions mitigation targets.
more »
« less
- Award ID(s):
- 2110760
- PAR ID:
- 10521356
- Editor(s):
- Roosa, Stephen A
- Publisher / Repository:
- Association of Energy Engineers
- Date Published:
- Journal Name:
- International journal of strategic energy and environmental planning
- Edition / Version:
- Volume 5 | Issue 2 | 2023
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2643-6930
- Page Range / eLocation ID:
- 21-37
- Subject(s) / Keyword(s):
- Bio-oil Bio-reactor, ZSM-5 Catalyst
- Format(s):
- Medium: X Size: 890KB Other: pdf
- Size(s):
- 890KB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pyrolysis of raw and hydrothermally carbonized (HTC) Chlamydomonas debaryana with and without activated carbon (AC) or β-zeolite as the catalyst were studied. Monoaromatic hydrocarbon yields from the pyrolysis of raw and HTC treated algae without a catalyst were relatively low at optimum yields of 11.2% and 12.0% obtained at 600 °C, respectively. The maximum yields of monoaromatic hydrocarbons from the AC catalyzed pyrolysis of raw and HTC treated algae were 43.8% obtained at 600 °C and 43.5% obtained at 800 °C, respectively, compared to 32.3% and 32.7% for the maximum yields from the β-zeolite catalyzed pyrolysis at 500 °C and 600 °C, respectively. However, β-zeolite catalyzed pyrolysis produced higher yields of total hydrocarbons (aromatic + aliphatic) for raw and HTC algae compared to AC catalyzed pyrolysis. This means while β-zeolite was more effective in producing total hydrocarbon content, AC was more effective in aromatization of oxygenates. The combination of HTC pretreatment and catalytic pyrolysis were effective in reducing nitrogen content in bio-oil. The yields of nitriles and nitrogenous compounds were negligible for the AC catalyzed pyrolysis of HTC treated algae at 600 °C, compared to 8.3% using the β-zeolite at the same temperature. The AC catalyst had a lower tendency towards cokingmore » « less
-
Subcritical hydrothermal liquefaction uses high temperatures (270-350°C) and high pressures (80-173 bar) to produce bio-crude oils that can be upgraded to liquid transportation fuels. In this study, two strains of Galdieria sulphuraria, an acidophilic, mixotrophic red microalgae, were cultivated on effluent from primary settling tanks at a municipal wastewater treatment plant. Samples were concentrated to 5 and 10 wt.% slurries after harvest and converted by hydrothermal liquefaction in a 1.8 L batch reactor. Reaction conditions included temperatures of 310, 330 and 350°C, and hold times of 5, 30 and 60 minutes. Yields and product properties were compared to those of hydrothermal liquefaction of Galdieria sulphuraria grown on media. Total oil yields were low (11-18 wt.%) and char yields were high (28-36 wt.%) compared to those from HTL of the algae grown on media (27-35 wt.% oil and 10-13 wt.% char), likely due to the higher ash content and lower lipid content of the algae grown on wastewater. The bio-crude oil, char, and aqueous phase samples were characterized to complete mass, energy and nutrient balances to characterize the tradeoffs in the algae growth and conversion systems for energy and nutrient recovery.more » « less
-
Global polystyrene (PS) waste accumulates at a rate of 28 million tons annually, while recycling rates stay at 1.3 %. PS degrades into microplastics, releasing various chemicals that affect ecosystems and human health. Conventional waste treatment methods are ineffective in reducing PS waste accumulation. This study developed batch low-pressure hydrothermal processing (LP-HTP) methods to convert PS to oils. Oil yields of 96–99 % were obtained with 1–2 % char and up to 2 % gas at average temperatures of 341–424°C for 19–75 minutes. Reversible reactions between monomers (C6-C9) and poly-aromatics (C10-C20+) were found to limit monomer yields. A two-step kinetic model accounting for the reversible reactions was developed. Temperature histories of the batch experiments were considered such that the estimated kinetic parameters were independent of reactor heating or cooling rates. The predicted yields of monomers and poly-aromatics agreed with experimental yields to within 6 %. The model predicted increasing monomer yields with decreasing PS loadings. This predictive model can aid future process optimization and scale-up. PS and polyolefins were co-processed to produce oils with 87 % yields and higher aromatic contents than oils produced from polyolefins alone. LP-HTP methods required no catalyst, had higher oil yields and less char formation than pyrolysis, and used much lower operating pressures and energy than supercritical water liquefaction. The methods also potentially have lower environmental impacts and 4.7 times higher energy recovery than incineration. The oils from LP-HTP, if separated into pure monomers, can be used as chemical feedstocks to achieve a circular use of hydrocarbons.more » « less
-
Abstract. Eversa Transform was used as an enzymatic catalyst to transform glandless and crude (heavy pigment) cottonseed oils into biodiesel. The oils were reacted with methanol at a 6:1 molar ratio with modified amounts of water, lipase, and temperature. Reactions were conducted in the presence of lipase and water at doses of 2, 5, and 8 wt% and 1, 3, and 6 wt%, respectively. Product composition and conversion were determined using the gas chromatography method of ASTM D6584. Oxidative stability was determined following EN 15751. The conversion to fatty acid methyl esters averaged 98.5% across all samples. Temperature had the most significant effect on conversion (p < 0.0035). Lipase and water dosages did not affect conversion, while each had an effect with temperature that was significant across the difference between 3 and 1 wt% water content and between 8 and 5 wt% enzyme content between the two temperatures (p = 0.0018 and 0.0153), respectively. Induction periods (oxidative stability) of the glandless and crude cottonseed oils were significantly different, but there was no difference between the two oil conversions based on oil type. Keywords: Biodiesel, Cottonseed oil, Fatty acid methyl esters, Lipase, Oxidative stability, Transesterification.more » « less
An official website of the United States government

