skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing solar magnetic fields from historical observations: V. Sunspot magnetic field measurements at Mount Wilson Observatory
Context. Systematic observations of magnetic field strength and polarity in sunspots began at Mount Wilson Observatory (MWO), USA in early 1917. Except for a few brief interruptions, this historical dataset has continued until the present. Aims. Sunspot field strength and polarity observations are critical in our project of reconstructing the solar magnetic field over the last hundred years. We provide a detailed description of the newly digitized dataset of drawings of sunspot magnetic field observations. Methods. The digitization of MWO drawings is based on a software package that we developed. It includes a semiautomatic selection of solar limbs and other features of the drawing, and a manual entry of the time of observations, measured field strength, and other notes handwritten on each drawing. The data are preserved in an MySQL database. Results. We provide a brief history of the project and describe the results from digitizing this historical dataset. We also provide a summary of the final dataset and describe its known limitations. Finally, we compare the sunspot magnetic field measurements with those from other instruments, and demonstrate that, if needed, the dataset could be continued using modern observations such as, for example, the Vector Stokes Magnetograph on the Synoptic Optical Long-term Investigations of the Sun platform.  more » « less
Award ID(s):
2000994
PAR ID:
10521360
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Astronomy and Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
628
ISSN:
0004-6361
Page Range / eLocation ID:
A103
Subject(s) / Keyword(s):
Sun: magnetic fields sunspots history and philosophy of astronomy astronomical databases: miscellaneous Astrophysics - Solar and Stellar Astrophysics Astrophysics - Instrumentation and Methods for Astrophysics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One of the main theories for heating of the solar corona is based on the idea that solar convection shuffles and tangles magnetic field lines to make many small-scale current sheets that, via reconnection, heat coronal loops. S. K. Tiwari et al. present evidence that, besides depending on loop length and other factors, the brightness of a coronal loop depends on the field strength in the loop’s feet and the freedom of convection in the feet. While it is known that strong solar magnetic fields suppress convection, the decrease in the speed of horizontal advection of magnetic flux with increasing field strength has not been quantified before. We quantify that trend by analyzing 24 hr of Helioseismic Magnetic Imager-SHARP vector magnetograms of each of six sunspot-active regions and their surroundings. Using Fourier local correlation tracking, we estimate the horizontal advection speed of the magnetic flux at each pixel in which the vertical component of the magnetic field strength (Bz) is well above (≥150 G) noise level. We find that the average horizontal advection speed of magnetic flux steadily decreases asBzincreases, from 110  ±  3 m s−1for 150 G (in network and plage) to 10  ±  4 m s−1for 2500 G (in sunspot umbra). The trend is well fit by a fourth-degree polynomial. These results quantitatively confirm the expectation that magnetic flux advection is suppressed by increasing magnetic field strength. The presented quantitative relation should be useful for future MHD simulations of coronal heating. 
    more » « less
  2. Abstract We compare a method for inferring the photospheric vector magnetic field using only spectroscopy to a conventional method based on polarimetry. The magnetic field strengthBand inclination angle can be inferred from the Zeeman splitting using only StokesI. We applied this method to a sunspot observed with the Vacuum Tower Telescope and compared the results to vector magnetograms from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, which used a polarimetric inversion. The spectroscopic inversion tends to show higher values inBcompared to the polarimetric data. In quiet regions the discrepancy inBwas typically a factor of two. In the strong sunspot fields, the differences averaged ≈22%. These discrepancies are significant, but comparable to those typically found among magnetograms from different instruments. Our results support the use of the spectroscopic inversion technique to provide a fast and reasonable estimate ofB. 
    more » « less
  3. Context.The interaction between magnetic fields and convection in sunspots during their decay process remains poorly understood, whereas the formation of sunspots is relatively well studied and fully modeled. Works on the velocity scales at the solar surface have pointed to the existence of the family of granules, whose interaction with the magnetic field leads to the formation of supergranules and their networks, which are visible at the solar surface. Aims.The aim of this paper is to consider relationship between the decay of sunspots and convection via the motion of the family of granules and how the diffusion mechanism of magnetic field operates in a decaying sunspot. Methods.We report the decay of a sunspot observed by the 1.6 m Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI) and the Near-InfraRed Imaging Spectropolarimeter (NIRIS). The analysis was aided by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). In the first step, we followed the decay of the sunspot with HMI data over three days by constructing its evolving area and total magnetic flux. In the second step, the high spatial and temporal resolution of the GST instruments allowed us to analyze the causes of the decay of the sunspot. Afterward, we followed the emergence of granules in the moat region around the sunspot over six hours. The evolution of the trees of fragmenting granules (TFGs) was derived based on their relationship with the horizontal surface flows. Results.We find that the area and total magnetic flux display an exponential decrease over the course of the sunspot decay. We identified 22 moving magnetic features (MMFs) in the moats of pores, which is a signature of sunspot decay through diffusion. We note that the MMFs were constrained to follow the borders of TFGs during their journey away from the sunspot. Conclusions.The TFGs and their development contribute to the diffusion of the magnetic field outside the sunspot. The conclusion of our analysis shows the important role of the TFGs in sunspot decay. Finally, the family of granules evacuates the magnetic field. 
    more » « less
  4. Magnetic polarity inversion lines (PILs) in solar active regions are key to triggering flares and eruptions. Recently, engineered PIL features have been used for predicting solar eruptions. Derived from the original PIL dataset, using line-of-sight (LoS) magnetograms provided by the Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager (HMI) Active Region Patches (HARPs), we provide a publicly available comprehensive dataset in a supervised format, where each instance includes a raster of Polarity Inversion Lines (PILs), one of the polarity convex hull, and a multivariate time-series of properties related to PILs. Using SDO-GOES integrated flares historical data covering May 2010 to January 2019, we have assigned each of the instances their corresponding class of flare, FQ, C, M or X. By integrating these diverse data modalities, our approach aims to improve the accuracy of solar flare predictions. Initial findings suggest that the multimodal approach can uncover new patterns and relationships, potentially leading to breakthroughs in predictive accuracy and more effective mitigation strategies against the impacts of solar activities. 
    more » « less
  5. Context. The inverse Evershed flow (IEF) is a mass motion towards sunspots at chromospheric heights. Aims. We combined high-resolution observations of NOAA 12418 from the Dunn Solar Telescope and vector magnetic field measurements from the Helioseismic and Magnetic Imager (HMI) to determine the driver of the IEF. Methods. We derived chromospheric line-of-sight (LOS) velocities from spectra of H α and Ca  II IR. The HMI data were used in a non-force-free magnetic field extrapolation to track closed field lines near the sunspot in the active region. We determined their length and height, located their inner and outer foot points, and derived flow velocities along them. Results. The magnetic field lines related to the IEF reach on average a height of 3 megameter (Mm) over a length of 13 Mm. The inner (outer) foot points are located at 1.2 (1.9) sunspot radii. The average field strength difference Δ B between inner and outer foot points is +400 G. The temperature difference Δ T is anti-correlated with Δ B with an average value of −100 K. The pressure difference Δ p is dominated by Δ B and is primarily positive with a driving force towards the inner foot points of 1.7 kPa on average. The velocities predicted from Δ p reproduce the LOS velocities of 2–10 km s −1 with a square-root dependence. Conclusions. We find that the IEF is driven along magnetic field lines connecting network elements with the outer penumbra by a gas pressure difference that results from a difference in field strength as predicted by the classical siphon flow scenario. 
    more » « less