skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomaly detection in the presence of irrelevant features
A<sc>bstract</sc> Experiments at particle colliders are the primary source of insight into physics at microscopic scales. Searches at these facilities often rely on optimization of analyses targeting specific models of new physics. Increasingly, however, data-driven model-agnostic approaches based on machine learning are also being explored. A major challenge is that such methods can be highly sensitive to the presence of many irrelevant features in the data. This paper presents Boosted Decision Tree (BDT)-based techniques to improve anomaly detection in the presence of many irrelevant features. First, a BDT classifier is shown to be more robust than neural networks for the Classification Without Labels approach to finding resonant excesses assuming independence of resonant and non-resonant observables. Next, a tree-based probability density estimator using copula transformations demonstrates significant stability and improved performance over normalizing flows as irrelevant features are added. The results make a compelling case for further development of tree-based algorithms for more robust resonant anomaly detection in high energy physics.  more » « less
Award ID(s):
2309456
PAR ID:
10521439
Author(s) / Creator(s):
; ;
Publisher / Repository:
10.1007/JHEP02(2024)220
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> In this paper, we present a method of embedding physics data manifolds with metric structure into lower dimensional spaces with simpler metrics, such as Euclidean and Hyperbolic spaces. We then demonstrate that it can be a powerful step in the data analysis pipeline for many applications. Using progressively more realistic simulated collisions at the Large Hadron Collider, we show that this embedding approach learns the underlying latent structure. With the notion of volume in Euclidean spaces, we provide for the first time a viable solution to quantifying the true search capability of model agnostic search algorithms in collider physics (i.e. anomaly detection). Finally, we discuss how the ideas presented in this paper can be employed to solve many practical challenges that require the extraction of physically meaningful representations from information in complex high dimensional datasets. 
    more » « less
  2. Vehicle-to-Everything (V2X) communication enables vehicles to communicate with other vehicles and roadside infrastructure, enhancing traffic management and improving road safety. However, the open and decentralized nature of V2X networks exposes them to various security threats, especially misbehaviors, necessitating a robust Misbehavior Detection System (MBDS). While Machine Learning (ML) has proved effective in different anomaly detection applications, the existing ML-based MBDSs have shown limitations in generalizing due to the dynamic nature of V2X and insufficient and imbalanced training data. Moreover, they are known to be vulnerable to adversarial ML attacks. On the other hand, Generative Adversarial Networks (GAN) possess the potential to mitigate the aforementioned issues and improve detection performance by synthesizing unseen samples of minority classes and utilizing them during their model training. Therefore, we propose the first application of GAN to design an MBDS that detects any misbehavior and ensures robustness against adversarial perturbation. In this article, we present several key contributions. First, we propose an advanced threat model for stealthy V2X misbehavior where the attacker can transmit malicious data and mask it using adversarial attacks to avoid detection by ML-based MBDS. We formulate two categories of adversarial attacks against the anomaly-based MBDS. Later, in the pursuit of a generalized and robust GAN-based MBDS, we train and evaluate a diverse set of Wasserstein GAN (WGAN) models and presentVehicularGAN(VehiGAN), an ensemble of multiple top-performing WGANs, which transcends the limitations of individual models and improves detection performance. We present a physics-guided data preprocessing technique that generates effective features for ML-based MBDS. In the evaluation, we leverage the state-of-the-art V2X attack simulation tool VASP to create a comprehensive dataset of V2X messages with diverse misbehaviors. Evaluation results show that in 20 out of 35 misbehaviors,VehiGANoutperforms the baseline and exhibits comparable detection performance in other scenarios. Particularly,VehiGANexcels in detecting advanced misbehaviors that manipulate multiple fields in V2X messages simultaneously, replicating unique maneuvers. Moreover,VehiGANprovides approximately 92% improvement in false positive rate under powerful adaptive adversarial attacks, and possesses intrinsic robustness against other adversarial attacks that target the false negative rate. Finally, we make the data and code available for reproducibility and future benchmarking, available athttps://github.com/shahriar0651/VehiGAN. 
    more » « less
  3. To maximize the discovery potential of high-energy colliders, experimental searches should be sensitive to unforeseen new physics scenarios. This goal has motivated the use of machine learning for unsupervised anomaly detection. In this paper, we introduce a new anomaly detection strategy called : factorized observables for regressing conditional expectations. Our approach is based on the inductive bias of factorization, which is the idea that the physics governing different energy scales can be treated as approximately independent. Assuming factorization holds separately for signal and background processes, the appearance of nontrivial correlations between low- and high-energy observables is a robust indicator of new physics. Under the most restrictive form of factorization, a machine-learned model trained to identify such correlations will in fact converge to the optimal new physics classifier. We test on a benchmark anomaly detection task for the Large Hadron Collider involving collimated sprays of particles called jets. By teasing out correlations between the kinematics and substructure of jets, our method can reliably extract percent-level signal fractions. This strategy for uncovering new physics adds to the growing toolbox of anomaly detection methods for collider physics with a complementary set of assumptions. Published by the American Physical Society2024 
    more » « less
  4. Log anomaly detection, critical in identifying system failures and preempting security breaches, finds irregular patterns within large volumes of log data. Modern log anomaly detectors rely on training deep learning models on clean anomaly-free log data. However, such clean log data requires expensive and tedious human labeling. In this paper, we thus propose a robust log anomaly detection framework, PlutoNOSPACE, that automatically selects a clean representative sample subset of the polluted log sequence data to train a Transformer-based anomaly detection model. Pluto features three innovations. First, due to localized concentrations of anomalies inherent in the embedding space of log data, Pluto partitions the sequence embedding space generated by the model into regions that then allow it to identify and discard regions that are highly polluted by our pollution level estimation scheme, based on our pollution quantification via Gaussian mixture modeling. Second, for the remaining more slightly polluted regions, we select samples that maximally purify the eigenvector spectrum, which can be transformed into the NP-hard facility location problem; allowing us to leverage its greedy solution with a (1-(1/e)) approximation guarantee in optimality. Third, by iteratively alternating between the above subset selection, a model re-training on the latest subset, and a subset filtering using dynamic training artifacts generated by the latest model, the data selected is progressively refined. The final sample set is used to retrain the final anomaly detection model. Our experiments on four real-world log benchmark datasets demonstrate that by retaining 77.7% (BGL) to 96.6% (ThunderBird) of the normal sequences while effectively removing 90.3% (BGL) to 100.0% (ThunderBird, HDFS) of the anomalies, Pluto provides a significant absolute F-1 improvement up to 68.86% (2.16% → 71.02%) compared to the state-of-the-art sample selection methods. The implementation of this work is available at https://github.com/LeiMa0324/Pluto-SIGMOD25. 
    more » « less
  5. The proliferation of web platforms has created incentives for online abuse. Many graph-based anomaly detection techniques are proposed to identify the suspicious accounts and behaviors. However, most of them detect the anomalies once the users have performed many such behaviors. Their performance is substantially hindered when the users' observed data is limited at an early stage, which needs to be improved to minimize financial loss. In this work, we propose Eland, a novel framework that uses action sequence augmentation for early anomaly detection. Eland utilizes a sequence predictor to predict next actions of every user and exploits the mutual enhancement between action sequence augmentation and user-action graph anomaly detection. Experiments on three real-world datasets show that Eland improves the performance of a variety of graph-based anomaly detection methods. With Eland, anomaly detection performance at an earlier stage is better than non-augmented methods that need significantly more observed data by up to 15% on the Area under the ROC curve. 
    more » « less