Abstract The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginningc. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (PycnaAmyot & Audinet‐Serville,YangaDistant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genusPlatypleurais recovered as polyphyletic, withPlatypleura signiferaWalker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a newPlatypleuraconcept is proposed with the synonymization ofAzanicadaVilletsyn.n.The generaOrapaDistant andHamzaDistant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapinisyn.n. is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.
more »
« less
The molecular systematics and diversification of a taxonomically unstable group of Asian cicada tribes related to Cicadini Latreille, 1802 (Hemiptera : Cicadidae)
The cicadas (Hemiptera: Cicadidae) related to tribe Cicadini exhibit some of the most remarkable phenotypes in the family, with many genera possessing striking colour patterns and unusual morphological features. This largely Asian group of 13 tribes has proven challenging for cicada taxonomists, in part because of likely convergent evolution or losses of these phenotypes. We present the first focused molecular phylogeny of this clade, including ~60 described genera. The genetic dataset contains 839 ingroup-informative sites (out of 2575) from mitochondrial cytochrome c oxidase subunit I, nuclear elongation factor-1 α, and nuclear acetyltransferase. We use Bayesian and maximum likelihood trees to test recent changes in tribe- and subtribe-level classification, and we reconstruct ancestral character states for potentially convergent traits influencing tribe descriptions. We use fossil and molecular clock calibrations to estimate the temporal and geographic context of the radiation. The tribes Gaeanini, Leptopsaltriini, Platypleurini, Psithyristriini, and Tosenini appear polyphyletic and in need of revision, in part because of convergent evolution of opaque wings and multiple convergent gains or losses of abdominal tubercles. Kalabita Moulton, 1923 is transferred from Platypleurini to Leptopsaltriini. Vittagaeana gen. nov. is established for Vittagaeana paviei comb. nov. and Vittagaeana dives comb. nov., formerly in Tosena. Sinosenini syn. nov. is synonymised with Dundubiina. Ayuthiini trib. nov. is established with two new subtribes for Ayuthia Distant, 1919 and Distantalna Boulard, 2009, formerly in Tosenini. For the earliest split in the tree, one common ancestor appears to have been Indian + Asian in geographic distribution and the other Asian. We estimate that the radiation began in the middle Cenozoic Era, possibly as recently as the early Miocene. The recent and steady pattern of diversification suggests that refinement of tribe diagnoses will prove challenging.
more »
« less
- Award ID(s):
- 1655891
- PAR ID:
- 10521490
- Publisher / Repository:
- CSIRO
- Date Published:
- Journal Name:
- Invertebrate Systematics
- Volume:
- 35
- Issue:
- 5
- ISSN:
- 1445-5226
- Page Range / eLocation ID:
- 570 to 601
- Subject(s) / Keyword(s):
- wing morphology tubercles character state reconstruction convergence family group classification nomenclature biogeography divergence times Cenozoic Era India Auchenorrhyncha.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of wellfixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology.more » « less
-
Molecular systematic studies of the anthozoan class Octocorallia have revealed widespread incongruence between phylogenetic relationships and taxonomic classification at all levels of the Linnean hierarchy. Among the soft coral taxa in order Malacalcyonacea, the family Alcyoniidae and its type genusAlcyoniumhave both been recognised to be highly polyphyletic. A recent family-level revision of Octocorallia established a number of new families for genera formerly considered to belong to Alcyoniidae, but revision ofAlcyoniumis not yet complete. Previous molecular studies have supported the placement ofAlcyonium verseveldti(Benayahu, 1982) in family Cladiellidae rather than Alcyoniidae, phylogenetically distinct from the other three genera in that family. Here we describe a new genus,Ofwegenumgen. nov.to accommodateO. verseveldticomb. nov.and three new species of that genus,O. coronalucissp. nov.,O. kloogisp. nov., andO. collisp. nov., bringing the total number of species in this genus to four.Ofwegenumgen. nov.is a rarely encountered genus so far known from only a few locations spanning the Indian and western Pacific Oceans. We present the morphological characters of each species and use molecular data from both DNA barcoding and target-enrichment of conserved elements to explore species boundaries and phylogenetic relationships within the genus.more » « less
-
In this study we review recent collections and historical records of epigeous members of the Pezizales formerly placed in the large, heterogenous genus Peziza from temperate southern South America. Recent analyses using molecular phylogenetic methods allow placement of these species in several previously described genera in recognition of the heterogeneity of Peziza. We include species in nine genera, describe one new species (Peziza gamundiae sp. nov.), and propose one new combination (Phylloscypha nothofageti comb. nov.). We also demonstrate that Pustularia microspora is a synonym of the previously described taxon Peziza pseudosylvestris. Our purpose is to draw attention to these taxa in order to promote their collection and study in a modern framework.more » « less
-
Abstract The taxonomic concepts of Blapimorpha and Opatrinae (informal and traditional, morphology‐based groupings among darkling beetles) are tested using molecular phylogenetics and a reassessment of larval and adult morphology to address a major phylogeny‐classification gap in Tenebrionidae. Instead of a holistic approach (family‐level phylogeny), this study uses a bottom‐up strategy (tribal grouping) in order to define larger, monophyletic lineages within Tenebrioninae. Sampling included representatives of 27 tenebrionid tribes: Alleculini, Amarygmini, Amphidorini, Blaptini, Bolitophagini, Branchini, Cerenopini, Coniontini, Caenocrypticini, Dendarini, Eulabini, Helopini, Lagriini, Melanimini, Opatrini, Pedinini, Phaleriini, Physogasterini, Platynotini, Platyscelidini, Praociini, Scaurini, Scotobiini, Tenebrionini, Trachyscelini, Triboliini and Ulomini. Molecular analyses were based on DNA sequence data from four non‐overlapping gene regions: carbamoyl‐phosphate synthetase domain ofrudimentary(CAD) (723 bp),wingless(wg) (438 bp) and nuclear ribosomal 28S (1101 bp) and mitochondrial ribosomal 12S (363 bp). Additionally, 15 larval and imaginal characters were scored and subjected to an ancestral state reconstruction analysis. Results revealed that Amphidorini, Blaptini, Dendarini, Pedinini, Platynotini, Platyscelidini and Opatrini form a clade which can be defined by the following morphological features: adults—antennae lacking compound/stellate sensoria; procoxal cavities externally and internally closed, intersternal membrane of abdominal ventrites 3–5 visible; paired abdominal defensive glands present, elongate, not annulated; larvae—prolegs enlarged (adapted for digging); ninth tergite lacking urogomphi. To accommodate this monophyletic grouping (281 genera and ∼4000 species), the subfamily Blaptinaesens. nov.is resurrected. Prior to these results, all of the tribes within Blaptinae were classified within the polyphyletic subfamily Tenebrioninae. The non‐monophyletic nature of Terebrioninae has already been postulated by previous authors, yet no taxonomic decisions were made to fix its status. The reinstatement of Blaptinae, which groups ∼50% of the former Tenebrioninae, helps to clarify phylogenetic relations among the whole family and is the first step towards a complete higher‐level revision of Tenebrionidae. The Central Asian tribe Dissonomini (two genera, ∼30 species) was not included in Blaptinae due to a lack of representatives in the performed phylogenetic analyses; however, based on morphological features, the tribe is listed as a potential addition to the subfamily.more » « less
An official website of the United States government

