skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Network Realization Functions for Optimal Distributed Control
In this article, we discuss a distributed control architecture, aimed at networks with linear and time-invariant dynamics, which is amenable to convex formulations for controller design. The proposed approach is well suited for large-scale systems, since the resulting feedback schemes completely avoid the exchange of internal states, i.e., plant or controller states, among subcontrollers. In addition, we provide state-space formulas for these subcontrollers, able to be implemented in a distributed manner.  more » « less
Award ID(s):
1653756
PAR ID:
10521579
Author(s) / Creator(s):
; ; ;
Editor(s):
Li, Z
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
Volume:
68
Issue:
12
ISSN:
0018-9286
Page Range / eLocation ID:
8059 to 8066
Subject(s) / Keyword(s):
Distributed control, linear time-invariant (LTI) networks, scalable implementations.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Real-time control of a fleet of Connected and Automated Vehicles (CAV) for Cooperative Adaptive Cruise Control (CACC) is a challenging problem concerning time delays (from sensing, communication, and computation) and actuator lag. This paper proposes a real-time predictive distributed CACC control framework that addresses time delays and actuator lag issues in the real-time networked control systems. We first formulate a Kalman Filter-based real-time current driving state prediction model to provide more accurate initial conditions for the distributed CACC controller by compensating time delays using sensing data from multi-rate onboard sensors (e.g., Radar, GPS, wheel speed, and accelerometer), and status-sharing and intent-sharing data in BSM via V2V communication. We solve the prediction model using a sequential Kalman Filter update process for multi-rate sensing data to improve computational efficiency. We propose a real-time distributed MPC-based CACC controller with actuator lag and intent-sharing information for each CAV with the delay-compensated predicted current driving states as initial conditions. We implement the real-time predictive distributed CACC control algorithms and conduct numerical analyses to demonstrate the benefits of intent-sharing-based distributed computing, delay compensation, and actuator lag consideration on string stability under various traffic dynamics. 
    more » « less
  2. This article proposes the application of a distributed containment control algorithm to a team of mobile robots. This paper builds on the containment controller developed by Yuan et al. (2019) for generic linear multi-agent system and tested in simulation only. In this article, we particularize the controller for the case of multiple mobile robots by including it into a two-layer control scheme. The high-level controller computes a desired position for the mobile robots, that is then used as reference trajectory for the low-level controller. The resulting control system is implemented as a fully distributed system on a team of mobile robots and validated in simulations and experiments. 
    more » « less
  3. We introduce the concept of Distributed Model Predictive Control (DMPC) with Acceleration-Weighted Neighborhooding (AWN) in order to synthesize a distributed and symmetric controller for high-speed flocking maneuvers (angular turns in general). Acceleration-Weighted Neighborhooding exploits the imbalance in agent accelerations during a turning maneuver to ensure that actively turning agents are prioritized. We show that with our approach, a flocking maneuver can be achieved without it being a global objective. Only a small subset of the agents, called initiators, need to be aware of the maneuver objective. Our AWN-DMPC controller ensures this local information is propagated throughout the flock in a scale-free manner with linear delays. Our experimental evaluation conclusively demonstrates the maneuvering capabilities of a distributed flocking controller based on AWN-DMPC. 
    more » « less
  4. Frequency restoration in power systems is conventionally performed by broadcasting a centralized signal to local controllers. As a result of the energy transition, technological advances, and the scientific interest in distributed control and optimization methods, a plethora of distributed frequency control strategies have been proposed recently that rely on communication amongst local controllers. In this paper, we propose a fully decentralized leaky integral controller for frequency restoration that is derived from a classic lag element. We study steady-state, asymptotic optimality, nominal stability, input-to-state stability, noise rejection, transient performance, and robustness properties of this controller in closed loop with a nonlinear and multivariable power system model. We demonstrate that the leaky integral controller can strike an acceptable trade-off between performance and robustness as well as between asymptotic disturbance rejection and transient convergence rate by tuning its DC gain and time constant. We compare our findings to conventional decentralized integral control and distributed- averaging-based integral control in theory and simulations. 
    more » « less
  5. Software-Defined Networking (SDN) is a dynamic, and manageable network architecture which is more cost-effective than existing network architectures. The idea behind this architecture is to centralize intelligence from the network hardware and funnel this intelligence to the management system (controller) [2]-[4]. Since the centralized SDN controller controls the entire network and manages policies and the flow of the traffic throughout the network, it can be considered as the single point of failure [1]. It is important to find some ways to identify different types of attacks on the SDN controller [8]. Distributed Denial of Service (DDoS) attack is one of the most dangerous attacks on SDN controller. In this work, we implement DDoS attack on the Ryu controller in a tree network topology using Mininet emulator. Also, we use a machine learning method, Vector Machines (SVM) to detect DDoS attack. We propose to install flows in switches, and we consider time attack pattern of the DDoS attack for detection. Simulation results show the effects of DDoS attacks on the Ryu controller is reduced by 36% using our detection method. 
    more » « less