skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1653756

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Li, Z (Ed.)
    In this article, we discuss a distributed control architecture, aimed at networks with linear and time-invariant dynamics, which is amenable to convex formulations for controller design. The proposed approach is well suited for large-scale systems, since the resulting feedback schemes completely avoid the exchange of internal states, i.e., plant or controller states, among subcontrollers. In addition, we provide state-space formulas for these subcontrollers, able to be implemented in a distributed manner. 
    more » « less
  2. Li, Z (Ed.)
  3. Goldengorin, B; Kuznetsov, S (Ed.)
  4. Lawrence, N (Ed.)
    This paper addresses the end-to-end sample complexity bound for learning in closed loop the state estimator-based robust H2 controller for an unknown (possibly unstable) Linear Time Invariant (LTI) system, when given a fixed state-feedback gain. We build on the results from Ding et al. (1994) to bridge the gap between the parameterization of all state-estimators and the celebrated Youla parameterization. Refitting the expression of the relevant closed loop allows for the optimal linear observer problem given a fixed state feedback gain to be recast as a convex problem in the Youla parameter. The robust synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant, such that a min-max optimization problem is formulated for the robust H2 controller via an observer approach. The closed-loop identification scheme follows Zhang et al. (2021), where the nominal model of the true plant is identified by constructing a Hankel-like matrix from a single time-series of noisy, finite length input-output data by using the ordinary least squares algorithm from Sarkar et al. (2020). Finally, a H∞ bound on the estimated model error is provided, as the robust synthesis procedure requires bounded additive uncertainty on the coprime factors of the model. Reference Zhang et al. (2022b) is the extended version of this paper. 
    more » « less
  5. This paper addresses the end-to-end sample complexity bound for learning the H2 optimal controller (the Linear Quadratic Gaussian (LQG) problem) with unknown dynamics, for potentially unstable Linear Time Invariant (LTI) systems. The robust LQG synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant. The closed-loopi dentification of the nominal model of the true plant is performed by constructing a Hankel-like matrix from a single time-series of noisy finite length input-output data, using the ordinary least squares algorithm from Sarkar and Rakhlin (2019). Next, an H∞ bound on the estimated model error is provided and the robust controller is designed via convex optimization, much in the spirit of Mania et al. (2019) and Zheng et al. (2020b), while allowing for bounded additive uncertainty on the coprime factors of the model. Our conclusions are consistent with previous results on learning the LQG and LQR controllers. 
    more » « less