This content will become publicly available on March 1, 2025
- Award ID(s):
- 2216452
- PAR ID:
- 10521609
- Publisher / Repository:
- Proceedings of Society for Information Technology & Teacher Education International Conference 2024
- Date Published:
- ISBN:
- 978-1-939797-76-6
- Page Range / eLocation ID:
- 2450-2452
- Format(s):
- Medium: X
- Location:
- Las Vegas, Nevada
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)CS teachers must develop numerous skills and attributes that go beyond those of other K-12 teachers, given the unique nature of the CS education landscape. In fact, CS teachers are often called upon to serve as teacher leaders very early in their CS careers in order to build a CS program in their schools or districts and ensure equitable access to CS courses. So how can we best support CS teachers in growing that leadership knowledge and skills? The American Institutes for Research (AIR) and its CS for All Teachers community of practice recently developed a “stack” of asynchronous and interactive professional learning modules – or micro-credentials – on teacher leadership in CS. There are five micro-credentials included in the stack, which focus on the following topics: 1) Equity in CS, 2) Collaboration in CS, 3) Building a CS Program, 4) Advocacy for CS, and 5) CS Policy. Presenters will discuss the promise of teacher leadership to transform CS education. They will share how the micro-credentials were created and what the literature says about using this approach for professional learning.more » « less
-
States across the United States are enacting policies aimed at increasing computer science (CS) courses and content in K–12 schools. We explore the relationship between such policy with the capacity of high schools to teach CS courses and student access to and participation in CS courses. To do this, we focus on Georgia, a state that has had a robust CS education movement over the past two decades. This paper investigates two research questions: 1) What factors at the school or district level are related to whether a high school teaches CS in Georgia? 2) What factors are related to CS enrollment rates in Georgia high schools? We examine these questions within the context of national and state policy factors that increase capacity of schools to teach CS. We describe the results of correlation and regression analyses of publicly available data for each school and district from 2016 and school CS enrollment from 2012 to 2016 in answering these questions. Results indicate that the odds of a school offering CS in 2016 were greatest for schools that taught CS the prior year, although median income and school size were also significant factors when prior CS was not considered. For CS enrollment, the model that included prior CS enrollment rates explained the most variance, although school size, median income, and the percentage of students who identify as Asian were also significant when prior CS enrollment was not included in the model. CS-specific policy has the potential to mitigate the effects of school size and income by offering capacity supports to schools that do not currently offer CS and can contribute to the sustainability and growth of CS offerings. These results have implications for policy efforts beyond the state of Georgia and provide direction for future research examining the causes of sustained CS offerings and enrollment patterns.
-
null (Ed.)Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities.more » « less
-
Computer Science for California (CSforCA) is a coalition of educators, industry leaders, nonprofit organizations, and higher education institutions advocating for high-quality computer science education, with an emphasis on girls, low-income students, and students of color. Seasons of CS is CSforCA’s year-round professional learning experience that aims to provide educators across the state of California access to quality training in computer science (CS) education that is standards aligned and culturally responsive. In order to (1) expand access to high quality computer science education throughout the state and (2) ensure that access is equitable, scalable and sustainable in the long-term, we concentrate on building the capacity of not just classroom teachers, but also school leaders, and counselors. Seasons of CS builds upon existing professional learning models across the country to increase access and broaden participation in computing (Ottenbreit-Leftwich, 2022; Karlin et al., 2023; Yadav et al., 2021; Wachen et al., 2021; Goode et al., 2020) The CAPE Framework helps ground Seasons of CS’s comprehensive collective impact approach to systemic change through sharing data-driven practices that address equity-minded practices to broaden participation. For instance, in partnership with the Kapor Center, CSforCA has developed and implemented a data tool to identify and respond to local and statewide equity gaps in access to computer science education. It is through these data-driven practices that we can hold ourselves - and the state- accountable for increasing access to CS. Furthermore, an ongoing examination of local and statewide data helps our stakeholder groups determine whether our strategies are meeting their intended outcomes, instead of continuing, or worse, exacerbating existing inequities. Since increasing access to ongoing professional learning for teachers is a priority tactic to increasing access of CS education for students, we want to better understand the following: Does increased professional learning opportunities for teachers equip them to reduce barriers to increase access and engagement for students? Does increased professional learning opportunities for teachers equip them to reduce barriers to increased access and engagement for students of color in particular? In order to answer these questions, we developed a study that derives data from the CSforCA data tool, as well as interviews from 70 of the 700 participating educators six months after their summer professional learning experience. In these interviews, we asked participants about barriers to implementing the professional learning they participated in. Preliminary data demonstrates a nuanced understanding of the outcomes of this large-scale professional learning program and explores the degree to which professional learning increases access to computer science among Black, Brown, and Indigenous students. In addition, we provide analyses that demonstrate the limitations of data tools, which have grown in popularity, to demonstrate overall access to -and engagement in- CS education, uncovering where and how CS education is prospering.more » « less
-
Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities.