skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching Social Justice in the Science Classroom
Overview Project teacher Emily Lisay describes a lesson she taught which spanned several days in a high school anatomy class and was based on the NGSS standard HS-LS1-2, during the second semester of the school year. Throughout the year, the class used public health and social justice data to explore equity in science and medicine. The main goal was for students to observe connections between scientific principles (the structure and the function of the respiratory system) and social issues, specifically the effects of climate change on human health. I also wanted them to consider possible solutions. This activity was built on students’ knowledge of the cardiovascular system, some basic knowledge of other body systems, and some background on climate change and its causes. The lesson was designed so that minimal resources (newsprint, markers, and internet access) would be needed.  more » « less
Award ID(s):
2101217
PAR ID:
10521613
Author(s) / Creator(s):
Publisher / Repository:
National Science Teachers Association
Date Published:
Journal Name:
The Science Teacher
Volume:
90
Issue:
6
ISSN:
0036-8555
Page Range / eLocation ID:
28 to 33
Subject(s) / Keyword(s):
social justice, local data, science teaching
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic brought unexpected changes across the globe to nearly all aspects of life. Activities such as shopping, traveling, and school, all considered routine aspects of life, suddenly took on a new level of risk. Approximately 1.6 billion students across the world had their schooling experiences interrupted during this global event.1 Matthew Stroup, a high school AP Psychology teacher, was dealing with these unexpected changes, but he also decided to use this disruption as a teaching moment. Mr. Stoup understood that sheltering in place and the resulting social isolation increased stress and anxiety among many families.2 During the 2020-21 school year, approximately 71% of all students were receiving either all or some of their schooling virtually.3 Mr. Stroup observed the effect of this unpredictable learning environment on his students’ learning and the toll it was taking on their relationships with peers, teachers, and family. According to the American Psychological Association, 81% of teens experienced a degradation in their mental health between Spring of 2020 and into the end of the year.4 The idea for the activity described in this article sprang from a class discussion on the effect of social isolation and travel hesitancy on mental health. 
    more » « less
  2. This project was designed to address three major challenges faced by undergraduate engineering students (UES) and pre-service teachers (PSTs): 1) retention for UESs after the first year, and continued engagement when they reach more difficult concepts, 2) to prepare PSTs to teach engineering, which is a requirement in the Next Generation Science Standards as well as many state level standards of learning, and 3) to prepare both groups of students to communicate and collaborate in a multi-disciplinary context, which is a necessary skill in their future places of work. This project was implemented in three pairs of classes: 1) an introductory mechanical engineering class, fulfilling a general education requirement for information literacy and a foundations class in education, 2) fluid mechanics in mechanical engineering technology and a science methods class in education, and 3) mechanical engineering courses requiring programming (e.g., computational methods and robotics) with an educational technology class. All collaborations taught elementary level students (4th or 5th grade). For collaborations 1 and 2, the elementary students came to campus for a field trip where they toured engineering labs and participated in a one hour lesson taught by both the UESs and PSTs. In collaboration 3, the UESs and PSTs worked with the upper-elementary students in their school during an after school club. In collaborations 1 and 2, students were assigned to teams and worked remotely on some parts of the project. A collaboration tool, built in Google Sites and Google Drive, was used to facilitate the project completion. The collaboration tool includes a team repository for all the project documents and templates. Students in collaboration 3 worked together directly during class time on smaller assignments. In all three collaborations lesson plans were implemented using the BSCS 5E instructional model, which was aligned to the engineering design process. Instruments were developed to assess knowledge in collaborations 1 (engineering design process) and 3 (computational thinking), while in collaboration 2, knowledge was assessed with questions from the fundamentals of engineering exam and a science content assessment. Comprehensive Assessment of Team Member Effectiveness (CATME) was also used in all 3 collaborations to assess teamwork across the collaborations. Finally, each student wrote a reflection on their experiences, which was used to qualitatively assess the project impact. The results from the first full semester of implementation have led us to improvements in the implementation and instrument refinement for year 2. 
    more » « less
  3. As a group of teachers and researchers in the USA who have collaborated to design captivating lessons with this story perspective, we have been exploring how centring students’ aesthetic reactions in our design process can result in lessons that are more captivating (Dietiker et al., 2019). In this article, we share a lesson designed by one teacher (Kayla) in collaboration with her co-authors and colleagues. This lesson was enacted with her Year 10 students (aged 14–15) in a non-accelerated integrated mathematics course at a diverse high school in a working-class suburb. 
    more » « less
  4. The University of Southern California’s (USC) Joint Educational Project’s STEM Education Programs hosted a three-day summer workshop focused on marine microbiology and coastal deoxygenation for high school educators. To increase ocean literacy in high school students from Title I schools, topical marine science research was translated into four lesson plans appropriate for classrooms that teach biology and environmental science. The lesson plans focus on how marine microbes affect and are affected by the dissolved oxygen content of seawater but covered diverse oceanography topics including microbial ecology, nutrient cycling, physical ocean dynamics, and climate change. This education framework was designed to promote and facilitate hands on discovery-based learning and making observations about the natural world. The workshop and lesson plan development were executed in partnership with faculty and graduate students researching marine microbes and oceanography from USC’s Marine and Environmental Biology department to provide scientific expertise on the subject matter. At the workshop, educators were guided through each lesson plan and given classroom sets of materials to complete each of the experiments in their own classrooms. Educators also had the opportunity to experience the academic research process at both USC and the Wrigley Institute of Environmental Studies on Catalina Island, California. Teachers valued this interactive experience to learn from professional scientists and STEM educators. They left the workshop equipped with the knowledge and confidence to teach these marine microbiology and biogeochemistry concepts in their classrooms. 
    more » « less
  5. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less